

Peel Wastewater Treatment Solutions

Clarkson Wastewater Treatment Plant Schedule C Class Environmental Assessment

Virtual Public Information Event No. 3 On Display from Thursday, May 12, 2022

Background Information

- Wastewater from residential, commercial, institutional, and industrial users in the Region of Peel is collected through a network of sewers and pumping stations and treated at either the G.E. Booth wastewater treatment plant (WWTP) or the Clarkson WWTP.
- As population grows in Peel, there is insufficient capacity to meet future wastewater treatment needs at the WWTPs.

The Region is undertaking two Schedule C Class EAs to develop preferred solutions at the G.E Booth WWTP and the Clarkson WWTP that will:

- Meet future needs associated with population growth, new regulations, climate resiliency, energy efficiency, and wet weather flow management.
- Address community expectations regarding level of service, odour, air/noise, water quality, protection of the environment and aesthetics.
- Provide greater flexibility and reliability in wastewater and biosolids management.

This Public Information Centre focusses on the Schedule C Class EA for the <u>Clarkson WWTP.</u>

Clarkson WWTP

Peel's Wastewater Treatment System

Clarkson Wastewater Treatment Plant (350 MLD)

G.E. Booth Wastewater Treatment Plant (518 MLD)

The <u>East-West Diversion</u> is a deep gravity trunk sewer of 2400 mm diameter currently being constructed along Derry Road. It is expected to be completed and operational by 2026. It allows Peel to divert flows from the G.E. Booth WWTP catchment area where there are capacity limitations, to the Clarkson WWTP catchment area which currently has surplus capacity.

> Clarkson Lake Ontario Wastewater Treatment Plant

Plan CIMA 💀 BLACK & VEATCH

Goals & Objectives of the Class EAs

Ĉ	Biosolids Management	 Region Wide Biosolids Management with Operational Flexibilit Diversified Outlets with Reliable Biosolids Treatment and End I Advanced Technologies with Energy and Resource Recovery Community Compatible and Acceptable
(φ_{s})	Energy Efficiency	 Reduce Greenhouse Gas (GHG) emissions Energy Reduction and Reuse
•••	Wet Weather Management	Real Time ControlDiverting Flow
	Receiving Water Quality	 Assimilative Capacity studies Define Effluent Quality Limits Protecting Intake Protection Zones (IPZs) and shoreline users/u
A A	Odour and Air Quality	Multi-barrier approaches
	Visual Aesthetics	 Landscaping Best use of sites Eliminate ash lagoons
	Compatibility with Ongoing Initiatives	 Real Time Control Existing Plant Upgrades Energy Efficiency Initiatives
	Treatment Redundancy	Firm Capacity with one train out of service

ty Uses at Each Facility

uses

Class EA Process

PHASE 1	PHASE 2	PHASE 3	PHASE 4
Problem or Opportunity	Alternative Solutions	Alternative Design Concepts for Preferred Solution	Environmental Study Report (ESR)
Identify Problem and Opportunity	Identify Alternative Solutions to Problem and Opportunity	Identify Alternative Design Concepts (technologies, construction methods, site layouts)	Complete Environmental Study Report (ESR)
Notice of Commencement (July 16, 2020)	Public Information Event No. 1. RE: Problem / Opportunity Statement and Alternative Solutions	Detail Inventory Natural, Social, Economic Environment	Environmental Study Report (ESR) Placed on Public Record
	Inventory Natural, Social, Economic Environment	Identify Impact of Alternative Designs on Environment, and Mitigating Measures	Notice of Completion to Review Agencies and Public
	Identify Impact of Alternative Solutions on the Environment, and Mitigating Measures	Evaluate Alternative Designs: Identify Recommended Design Concepts	Opportunity to Request Minister Within 30 Days of Notification to Request and Order*
PHASES 1 & 2	Evaluate Alternative Solutions: Identify Recommended Solutions	Public Information Event No. 3. RE: Preliminary Preferred Design Concept	
COMPLETED <u>CONCURRENTLY</u> FOR CLARKSON W/W/TP AND G F	Public Information Event No. 2. RE: Preliminary Preferred Solution	We are here! Select and Finalize Preferred Design Concept	CI
BOOTH WWTP	Select Preferred Solution		

PHASE 5

Implementation

Complete Contract Drawings and Tender Documents

Proceed to Construction and Operation

Monitor for Environmental Provisions and Commitments

PHASES 3, 4, & 5 COMPLETED <u>SEPARATELY</u> FOR ARKSON WWTP AND G.E. BOOTH WWTP

PIC No.3 Objectives

Objective: Provide an overview of Phase 3 of the Class EA for the Clarkson WWTP

This is the third and final PIC for this study.

Phase 3 Key Questions

- What technologies should we use to treat our • wastewater (liquid and solids components)?
- •
- be provided?
- look?
- \bullet

Where should our treated biosolids go and be used? Do we require additional outfall capacity? How will it

How should the wastewater plant site be laid out and

How do we mitigate environmental and social impacts?

Existing Wastewater Treatment

- grit removal, primary clarification, aeration, de-chlorination prior to discharge to Lake Ontario through the plant outfall.
- (MLD).
- therefore has excess capacity.
- The outfall has sufficient capacity to meet future requirements. No expansion to outfall capacity is required.

The existing treatment processes include screening, secondary clarification, and chlorine disinfection and

The existing plant capacity is 350 megalitres per day

The plant currently receives about 220 MLD flow, and

Recommended Wastewater Treatment Solution

- the Clarkson WWTP in the short-term.
- Expand the Clarkson WWTP from 350 MLD to 500 capacity within the site boundaries.
- the site.

Divert flows from the G.E. Booth WWTP catchment to Clarkson WWTP through the East-to-West Diversion Trunk Sewer to take advantage of excess capacity at

MLD by providing additional wastewater treatment

Expansion facilities to be located on the east part of

Existing Biosolids Management

- The solids in the wastewater are collected for digestion and dewatering.
- G.E. Booth WWTP solids.

The digested and dewatered biosolids are trucked to the G.E. Booth WWTP for incineration along with the

Recommended Biosolids Management Solution

- Stop trucking Clarkson WWTP biosolids to the G.E. Booth WWTP for incineration.
- capacity at the Clarkson WWTP to effectively treat the solids and produce high-quality biosolids endproducts.
- Beneficial reuse of biosolids such as:
 - silviculture (tree farming).
 - As soil amendments with fertilizers.

Provide additional solids stabilization and processing

• Land applications including agricultural lands or

Phase 3 Evaluation Approach

Wastewater Treatment – Design Parameters

Receiving Water Impact Assessment (RWIA) was completed to confirm the plant expansion's compliance with the Ministry of the Environment, Conservation and Parks (MECP) water quality guidelines.

Desigr
Parameter
De
Average Day Flow
Peak Daily Flow
Peak Hourly Flow
Peak Instantaneous Flow
Wastewat
cBOD ₅
TSS
ТКМ
ТР
Minimum Month Temperature
Alkalinity
De
Parameter
Effluent
cBOD
TSS
TAN
ТР
E. Coli
Effluent O
cBOD ₅
TSS
TAN
ТР
E. Coli

Parameters						
Design Value						
ign Flows						
500 MLD						
850 MLD						
1,200 MLD						
1,500 MLD						
r Characteristics						
230 mg/L						
305 mg/L						
30 mg/L						
4.6 mg/L						
10.8°C						
233 mg/L						
ign Basis						
Design Value						
Quality Limits						
25 mg/L						
25 mg/L						
13.0 mg/L (May 1 - May 31)						
10.0 mg/L (Jun 1 – Sep 30)						
13.0 mg/L (Oct 1 – Oct 31)						
24.0 mg/L (Nov 1 - Apr 30)						
0.70 mg/L						
200 organisms per 100 mL						
ality Objectives						
15 mg/L						
15 mg/L						
5.0 mg/L (May 1 - Oct 31)						
12.0 mg/L (Nov 1 - Apr 30)						
0.60 mg/L						
150 organisms per 100 mL						

Region

of Peel

working with you

Wastewater Treatment – Long List Alternatives & Screening

No.	Technology Alternative	Maturity of Technology	Proven Application at Large WWTPs	Compatibility with Existing and Future Processes	Compatibility with Regional Energy Management and GHG Reduction Goals	Ability to Implement within Required Schedule	SHORT-LISTED FOR EVALUATION
1	Conventional Activated Sludge (CAS)	Positive/No Impact	Positive/No Impact	Positive/No Impact	Moderate Impact	Positive/No Impact	Yes
2	CAS with Chemically Enhanced Primary Treatment (CEPT)	Positive/No Impact	Positive/No Impact	Positive/No Impact	Positive/No Impact	Positive/No Impact	Yes
3	CAS with Wet Weather Flow (WWF) Treatment	Positive/No Impact	Moderate Impact	High Impact	Moderate Impact	Moderate Impact	Νο
4	Ballasted Activated Sludge (BAS)	Moderate Impact	High Impact	Positive/No Impact	High Impact	High Impact	No
5	Biological Nutrient Removal (BNR)	Positive/No Impact	Positive/No Impact	Positive/No Impact	Positive/No Impact	Positive/No Impact	Yes
6	Membrane Bioreactor		Moderate Impact	Positive/No Impact	High Impact	Positive/No Impact	No
7	Membrane Aerated Biofilm Reactor	Moderate Impact	High Impact	Positive/No Impact	Positive/No Impact	High Impact	No
8	Integrated Fixed-Film Activated Sludge / Moving Bed Bioreactor	Moderate Impact	High Impact	High Impact	High Impact	High Impact	Νο
9	Sequencing Batch Reactor		Moderate Impact	High Impact	High Impact	Moderate Impact	No
10	Aerobic Granular Sludge	Moderate Impact	Moderate Impact	High Impact	Moderate Impact	High Impact	No
11	Biological Aerated Filter			High Impact	High Impact	Positive/No Impact	No

Wastewater Disinfection – Long List Alternatives & Screening

No.	Technology Alternative	Maturity of Technology	Proven Application at Large WWTPs	Compatibility with Existing and Future Processes	Compatibility with Regional Energy Management and GHG Reduction Goals	Ability to Implement within Required Schedule	SHORT-LISTED FOR EVALUATION
1	Chlorination/ dechlorination	Positive/No Impact	Positive/No Impact	Positive/No Impact	Moderate Impact	Positive/No Impact	Yes
2	UV Disinfection	Positive/No Impact	Positive/No Impact	Positive/No Impact	Positive/No Impact	Positive/No Impact	Yes
3	Ozonation	Positive/No Impact	Moderate Impact	High Impact	Moderate Impact	Moderate Impact	Νο
4	Peracetic Acid	Moderate Impact	High Impact	Positive/No Impact	High Impact	High Impact	Νο

Wastewater Treatment and Disinfection: Design Concept Evaluation

Design Concepts	Natural Environment (25%)	Social – Cultural Environment (25%)	Technical Considerations (25%)	Economic Considerations (25%)	Total Score (100%)					
Wastewater Treatment Design Concepts										
Conventional Activated Sludge (CAS)	18.9	20.7	20.7	15.8	76.1					
CAS with Chemically Enhanced Primary Treatment (CEPT)	19.3	20.2	20.5	15.8	75.8					
Biological Nutrient Removal (BNR)	19.6	20.9	19.1	16.7	76.3					
	Wastewater Disinfection Design Concepts									
Chlorination / Dechlorination	20.4	22.3	22.5	19.2	84.4					
Ultraviolet (UV) Disinfection	20.4	22.3	17.0	14.2	73.9					

Wastewater Treatment – Preferred Design Concepts

Recommended Wastewater Disinfection Design Concept

- Existing outfall to be maintained; includes a chlorination / dechlorination disinfection system.
- **Recommended design concept involves maintaining existing** chlorination and dechlorination disinfection facilities with required chemical dosage increases equivalent to increased flows

Chlorination / Dechlorination System

Conceptual Site Layout Existing disinfection building adjacent to existing outfall chamber. Sodium hypochlorite injected at outfall chamber and sodium bisulphite injected before effluent discharge to Lake Ontario. Outfall provides the required chlorine contact time for disinfection.

Biosolids Loading at Clarkson WWTP:

- **12,300 dry tonnes per year** (DT/year) of digested, dewatered biosolids produced in 2020.
- **28,600 DT/year** of digested, dewatered biosolids anticipated by 2041.

Anaerobic Digesters, Clarkson WWTP

Biosolids Market Assessment was completed to identify the demand and compliance limits of treated biosolids to be sent to beneficial end

use markets.

Biosolids Management Options, Products, and Market End Users

BIOSOLIDS MANAGEMENT OPTIONS	BIOSOLID PROCESS AND PRODUCTS	MARKET END USERS
Beneficial Use	 Digested biosolids (liquid) Digested biosolids (dewatered cake) Manufactured soil material Advanced digested biosolids; liquid or cake Thermal-dried biosolids Alkaline stabilized biosolids Thermal-alkaline hydrolysis biosolids Composted biosolids products 	 Agricultural land application Silviculture (tree farming) Horticultural market Golf courses, parks and recreation Landscaping Land rehabilitation
Thermal Reduction	 Incinerator residual ash disposal Incinerator residual ash use 	 Municipal waste landfill Incorporation into cement Other ash reuse options
Landfilling	 Unstabilized dewatered cake Stabilized dewatered cake Compost products Thermally dried product 	 Municipal landfill and landfill cover Monofill (dedicated landfill)
Co-management with municipal solid waste	Compost productsBiosolids cake (dewatered)	 Management with source separated organics

Potential Markets for Biosolids from Clarkson WWTP

	Р	EEL REGION	GREATER GOLDEN HORSESHOE		
OUTLET	LAND AREA (HECTARES)	D AREA POTENTIAL DEMAND (DT/YR)		ANNUAL MAXIMUM POTENTIAL DEMAND (DT/YR)	
Agriculture	27,000	108,000	296,000	1,184,000	
Parks & Rec. Dept.	2,600	10,400			
Golf Courses	570	2,300			
TOTAL	30,170	120,700	296,000	1,184,000	

Biosolids currently produced at the Clarkson WWTP meet Canadian Food Inspection Agency (CFIA), Non-Agricultural Source Material (NASM) Category 3 CM1¹ and Category A & B feedstock metals limits. With anaerobic digestion, the Clarkson WWTP biosolids meet CP2² limits for faecal coliform and could meet the CP1³ and CFIA limits with further processing.

Note 1: Metal Category 1 based on metal content Note 2: Pathogen Category 2 based on pathogen limit Note 3: Pathogen Category 1 based on pathogen limit

Greatest market availability in agricultural cropland. Market demand exceeds the current biosolid quantities from the Clarkson & G.E. Booth plants. It is anticipated that the market will be able to absorb a significant portion of biosolids generated by both plants to 2041.

Biosolids Management – Long List Alternatives & Screening

No.	Technology Alternative	Maturity of Technology	Proven Application at Large WWTPs	Compatibility with Existing and Future Processes	Compatibility with Regional Energy Management and GHG Reduction Goals	Ability to Implement within Required Schedule	SHORT-LISTED FOR EVALUATION
1	Anaerobic Digestion	-					
1a	Conventional Mesophilic Anaerobic Digestion	Mature Technology	Yes	Yes	Yes	Yes	Yes
1b	Temperature-Phased Anaerobic Digestion (TPAD)	Uncommon	Yes	Yes	Yes	Yes	No
1c	Acid/Gas Phased Anaerobic Digestion	Limited number of installations	Yes	Yes	Yes	Yes	No
2	Hydrolysis Pretreatment + Anaero	obic Digestion					
2a	Thermal Hydrolysis Pre-treatment (THP)	Maturing technology becoming popular	Yes	Yes	Yes	Yes	Yes
2b	Thermo / Alkaline Hydrolysis Pre-treatment	Limited number of installations	Yes	No	Yes	Yes	No
3	Aerobic Digestion						
3a	Conventional Aerobic Digestion	Mature Technology	No	No	No	Yes	No
3b	Autothermal Thermophilic Aerobic Digestion (ATAD)	Maturing Technology Second Generation	No	No	No	Yes	No
4	Drying						
4a	Direct Thermal Dryer (Drum Dryer, Belt Dryer, Fluidized Bed Dryer)	Mature Technology	Yes	Yes	Yes	Yes	Yes
4b	Indirect Thermal Dryer (Paddle Dryer, Disc Dryer)	Mature Technology	Yes	No	Yes	Yes	No
4c	Solar Dryer	Newer, successful technology becoming popular	Yes	No	Yes	No	No

Biosolids Management – Long List Alternatives & Screening

STEP 1 Develop Long List of Technologies							ts Reduction Goals
No.	Technology Alternative	Maturity of Technology	Proven Application at Large WWTPs	Compatibility with Existing and Future Processes	Compatibility with Regional Energy Management and GHG Reduction Goals	Ability to Implement within Required Schedule	SHORT-LISTED FOR EVALUATION
5	Chemical Stabilization						
5a	Alkaline Stabilization	Mature Technology	No	Yes	Yes	Yes	No
5b	Alkaline Stabilization with Supplemental Heat or Acid	Mature Technology	Yes	Yes	Yes	Yes	Yes
5c	Alkaline Stabilization with Supplemental Heat and High-Speed Mixing	Maturing technology	Yes	Yes	Yes	Yes	Yes
6	Composting						
6a	Composting (Open Technologies Aerated Static Pile and Windrow Composting) or co- composting with Region of Halton	Mature Technology	No	Yes	Yes	No	No
7	Thermal Conversion						
7a	Incineration	Mature Technology	Yes	Yes	No	Yes	No
7b	Gasification	No	Yes	No	No	No	No
7c	Pyrolysis	No	Yes	No	No	No	No
7d	Wet Oxidation	No	Yes	No	No	No	No
7e	Hydrothermal Liquification	No	Yes	No	No	No	No

Biosolids Management - Design Concept Evaluation

Design Concepts	Natural Environment (25%)	Social - Cultural Environment (25%)	Technical Considerations (25%)	Economic Considerations (25%)	Total Score (100%)						
	Biosolids Management Design Concepts										
Expansion of Anaerobi Digestion System & Third Party Beneficial Us	c - 18.5 e	18.6	20.7	15.0	72.9						
Thermal Hydrolysis Proces (THP), Expansion of Anaerobic Digestion System & Third-Party Beneficial Use of CP1 Biosolids or Fertilize Produc	s f & 18.8 f t	19.5	20.0	13.3	71.6						
Expansion of Anaerobi Digestion System, Direc Thermal Drying & Third-Part Beneficial Us	c t y e	20.2	20.9	15.0	73.9						

Biosolids Management – Preferred Design Concept

Clarkson WWTP: Current Site Layout

Clarkson WWTP: Overall Design Concept

Clarkson WWTP: Overall Design Concept

Impacts, Mitigation, and Approvals

The Clarkson WWTP Environmental Assessment provides recommendations that will:

- Minimize impacts to environmental and archeological features
- Maximize buffer from existing and future neighbouring properties
- Meet MECP setback requirements
- Optimize the existing plant with flexibility for future treatment technologies, expansions, and changing environment
- Provide energy recovery and GHG emissions reduction through the proposed expansion strategy. The biosolids management approach produces biogas to be used on-site for energy reuse, along with a biosolids product which can be certified as a fertilizer, thereby resulting in carbon credits and further GHG emissions reduction.

Key Investigations required for detailed design:

- Stage 2 Archeological Assessment (AA) for portions of the existing Clarkson WWTP site
- Natural Environment Study for removal and replication of one wetland community (MAM2)
- Air/Odour/Noise Modelling to establish levels and mitigation measures to meet MECP requirements
- Receiving Water Assessment (Assimilative Capacity Study) to ensure no impacts to sensitive shoreline users or Intake Protection Zones (IPZ)
- Stormwater Management Plan

Project Timeline

Region

of Peel

working with you

We want to hear from you!

- Visit our website: • www.peelregion.ca/Clarkson
- **Provide PIC No. 3 feedback** on the website from • May 12 to 26, 2022
- Sign-up to receive study notifications on the ٠ website, including notice of study completion when the final report is available for public review.

For any Class EA questions, please contact the Project Manager:

Cindy Kambeitz, PMP, PMI-RMP 905-791-7800, ext. 5040 ClarksonEA@peelregion.ca

Next Steps:

August 2022: Issue Notice of Completion and initiate 30-day public