APPENDIX 9

HYDROGEOLOGICAL INVESTIGATION REPORT

DRAFT HYDROGEOLOGICAL INVESTIGATION REPORT ENVIRONEMNTAL ASSESSMENT AND PRELIMINARY DESIGN FOR DRAINAGE IMPROVEMENTS OF HIGHWAY 50 FROM MAYFIELD ROAD TO HEALEY ROAD REGION OF PEEL

Report

to

R.V. Anderson Associates Limited

Date: October 07, 2020 File: 28262

TABLE OF CONTENTS

1	INTRO	ODUCTION1			
2	BACK	GROUND REVIEW	1		
	2.1	Site and Project Description	. 1		
	2.2	Topography and Drainage	. 2		
	2.3	Physiography	. 2		
	2.4	Regional Geology and Hydrogeology	. 2		
	2.5	Groundwater Users	. 4		
	2.6	Environmental Features	. 4		
3	INVES	TIGATION	5		
	3.1	Geotechnical Investigation	. 5		
	3.2	Hydrogeological Investigation	. 5		
		3.2.1 Groundwater Levels	. 6		
		3.2.2 Hydraulic Conductivity	. 7		
		3.2.3 Infiltration Testing for LID Applications	. 7		
		3.2.4 Groundwater Quality	. 9		
4	DEWA	TERING ASESSMENT	10		
5	IMPAC	CT ASSESSMENT	11		
6	CONC	LUSIONS AND RECOMMENDATIONS	12		
	6.1	Water Taking Permitting	12		
	6.2	Groundwater Discharge	12		
	6.3	Low Impact Development	13		
	6.4	Control of Impacts and Monitoring	13		
	6.5	Future Work	14		
7	CLOS	URE	15		
8	REFE	RENCES	17		

STATEMENT OF LIMITATIONS AND CONDITIONS

TABLES

Table 1 – Monitoring Well Details	. 5
Table 2 – Measured Groundwater Levels in Monitoring Wells	. 6
Table 3 – Estimated Hydraulic Conductivities	. 7
Table 4 – Estimated Saturated Hydraulic Conductivity and Infiltration Rate	. 8

APPENDICES

Appendix A Drawings

- 1 Site Location Plan
- 2 Topography
- 3 Physiography
- 4 Surficial Geology
- 5 Bedrock Geology
- 6 Regional Geologic Cross Section
- 7 MECP Well Records
- 8 Nearby Environmental Features
- 9 Monitoring Well Locations
- Borehole Location Plans
- Appendix B MECP Well Records
- Appendix C Record of Borehole Sheets
- Appendix D Single Well Response Test Analyses
- Appendix E Infiltration Testing Results
- Appendix F Laboratory Certificates of Analysis

1 INTRODUCTION

Thurber Engineering Ltd. (Thurber) was retained by R.V. Anderson Associates Limited to prepare a hydrogeological investigation in support of the Class Environmental Assessment (Class EA) and Preliminary Design for stormwater management/drainage improvements of Highway 50 in the Town of Caledon, Ontario. The limits of the project are from Mayfield Road to Healey Road for a total length of approximately 2.4 km (the Site) and are shown on Drawing 1 in Appendix A. A recent condition assessment of the drainage infrastructure along the Site has identified the need for the rehabilitation of 17 entrance culverts (and crossings) on the east and west sides of Highway 50 within the Site limits.

The purpose of the investigation was to establish baseline hydrogeological conditions along the alignment in support of the class EA and preliminary design through subsurface investigation, including characterization of the soil and groundwater conditions. Preliminary discussion of potential construction dewatering needs is included, as well as an impact assessment and potential mitigation measures.

A geotechnical investigation was completed concurrently with the hydrogeological investigation. The results of the geotechnical investigation are reported under separate cover and should be read in conjunction with this report.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

2 BACKGROUND REVIEW

2.1 Site and Project Description

This section of Highway 50 between Mayfield Road and Healey Road presently consists of a fivelane urban roadway with two lanes in the north bound direction, two lanes in the southbound direction, and a central turning lane. Concrete curbs and gutters abut the paved lanes on both sides of the road and shallow ditches lay beyond the curb on both sides.

A recent condition assessment of the road's drainage infrastructure has confirmed the need for rehabilitation of 17 entrance culverts (and crossings) on the east and west side from McEwan Drive to Mayfield Road. Construction elements may include low impact development (LID) features such as infiltration trenches or bioswales, storm sewers, culverts (assumed to be non-structural) and site grading.

The land use adjacent to the corridor is a mix of industrial and commercial properties, with a few residential properties located on the eastern side at the southern end of the site.

2.2 Topography and Drainage

The Site is located within the Humber River Watershed and falls under the jurisdiction of the Toronto Region and Region Conservation Authority (TRCA). The regional topography slopes southeasterly toward Humber River, and eventually drains into Lake Ontario. A regional topographic map is presented on Drawing 2 in Appendix A.

Ground elevation at the Site range from about 248 m in the northern portion of the Site near Healey Road to approximately 226 m near Mayfield Road in the southern portion of the Site. Overland flow drainage at the Site generally follows the existing topography toward the adjacent watercourse.

2.3 Physiography

A review of the physiographic regions of southern Ontario indicated that the north portion of the Site is primarily located within the physiographic region of the South Slope, while the south portion of the Site is located within the Peel Plain physiographic region. The South Slope is typically a drumlinized area consisting of areas of thin (<1 m) aeolian sand deposits underlain by glacial deposits, primarily till. The peel plain physiographic region is a relatively flat tract of soils that are predominantly clay with localized clay loam and loam. The underlying material of the plain is a till containing shale and limestone fragments. (Chapman and Putnam, 1984). A physiographic map of the Site and surrounding area is shown on Drawing 3 in Appendix A.

2.4 Regional Geology and Hydrogeology

The current understanding of the regional geological and hydrogeological conditions was based on scientific work conducted by the geological and hydrogeological Information from Ontario Geological Survey (OGS), and available information from the TRCA.

The surficial geology across the Site primarily consists of clay to silt-textured till that was derived from glaciolacustrine deposits or shale. Drawing 4 in Appendix A illustrates the regional surficial geology for the Site.

The bedrock underlying the Site consists of the Georgian Bay Formation, typically consisting of shale and limestone. The bedrock surface in the area is expected to be at approximate elevation of 110 m. A bedrock geology map is presented on Drawing 5 in Appendix A.

A regional north to south geologic cross section along the Main Humber River is provided on Drawing 6 in Appendix A. Based on a review of the regional cross section, the following units overlie the bedrock:

- Recent Sediments;
- Halton Till (Aquitard);
- Oak Ridges Aquifer Complex (Aquifer);
- Newmarket Till (Aquitard);
- Thorncliffe Formation (Aquifer);
- Sunnybrook Drift (Aquitard), and
- Scarborough Formation (Aquifer)

The Halton Till is the uppermost overburden unit across the Site and it consists of silt to silty clay with occasional gravel. Groundwater flow in this aquitard is generally vertically downward, with the exception of localized areas where the underlying aquifers are artesian.

The uppermost aquifer underlying the Site is the Oak Ridges Aquifer Complex (ORAC) which is interpreted to occur where continuous layers of fine to medium sand are encountered. The degree of hydraulic connection with the moraine sediments generally decreases with distance from the Oak Ridges Moraine (ORM). Groundwater flow in this unit is influenced by topography and primarily horizontal towards Lake Ontario, with localized flow towards watercourses that cut into the aquifer and may be under artesian conditions.

The lower contact of the ORM sits on the Newmarket Till that acts as a regional aquitard separating the ORM from underlying Thorncliffe formation. Groundwater flow in this unit is predominantly downward, with the leakage to the underlying Thorncliffe Formation.

The Thorncliffe formation is comprised of glaciofluvial deposits containing silt, sand and clay deposits. Groundwater flow is generally south towards Lakes Ontario.

The Sunnybrook Drift aquitard separates the Thorncliffe aquifer from the underlying Scarborough Aquifer. This unit thins in the western portion of the watershed.

The Scarborough Formation is composed of clay, silt, and sand sediments in a deltaic sequence. This unit is mostly found within bedrock valleys and is a very significant unit as the overall

transmissivity of the Scarborough aquifer is high within the valley system. The groundwater flows to the south towards Lake Ontario.

2.5 Groundwater Users

A search of the Ministry of Environment, Conservation and Parks (MECP) well records database conducted for a 500 m radius around the Site returned a total of 115 records (Drawing 7 in Appendix A). Based on the well records, the majority of the nearby wells are listed as water supply wells (40 records). Although it is Thurber's understanding that an existing watermain is located on the eastern side of HWY 50, it is possible that some residences are not connected to the municipal water supply system. A detailed table summarizing the data provided from MECP's database is provided in Appendix B.

A search conducted in August 2020 identified no active Permits To Take Water (PTTWs) within 500 m of the Site.

2.6 Environmental Features

Based on regional-scale source protection mapping, the Site is not located within Wellhead Protection Areas (WHPAs), Significant Groundwater Recharge Areas (SGRAs) and Highly Vulnerable Aquifers (HVAs). However, the SGRAs lie just southeast of the intersection of Highway 50 and Mayfield Road. The Site is also located within the TRCA regulated areas.

A number of tributaries of Humber River and West Humber River are located within 1 km of the Site, including an onsite tributary. This tributary of the Humber River flows southeasterly towards the Humber River. Based on a review of the Humber River Fisheries Management Plan Report (Clayton J. et. al., 2004), the watercourse is classified as a warm water watercourse; and thus, is unlikely to be groundwater dependent.

A search of the Ministry of Natural Resources and Forestry (MNRF) online mapping returned no significant heritage features, including Areas of Natural and Scientific Interest (ANSIs), wetlands, or Environmentally Sensitive Areas (ESAs), within 1 km of the Site. The natural features located within a 1 km buffer of the Site are illustrated on Drawing 8 in Appendix A.

Roadside ditches and/or swales generally existed along both sides of the Site alignment. The ditches were covered with grass, vegetation and shrubs; however, gabion stones lined portions of the east ditch at culvert or head wall inlets and outlets.

3 INVESTIGATION

The current understanding of the local geological and hydrogeological environment of the Site is based on the geotechnical investigation and the hydrogeological investigation conducted by Thurber.

3.1 Geotechnical Investigation

Thurber conducted a geotechnical investigation at the Site in March and April 2020 (Thurber, 2020). Twenty-five boreholes were drilled to depths of 3.6 to 4.4 m. The geotechnical borehole logs were used to understand local geology of the Site. Record of borehole sheets are provided in Appendix C and borehole location plans are provided in Appendix A.

Based on the borehole logs, the overburden material at the Site consists of a thin layer of asphalt overlying a layer of sand to gravelly sand fill with thickness ranging from approximately 0.6 m to 3.3 m. Underlying the fill is a layer of silty clay till extending to the termination of the boreholes. Below the sandy fill layer, a silty clay fill layer was also encountered in Boreholes 20-02 and 20-20.

3.2 Hydrogeological Investigation

To support the hydrogeological investigation, eight monitoring wells were installed in the selected boreholes. Each monitoring well was developed following completion of drilling by removing a minimum of 3 well volumes of water to clear any silt or drilling debris from the sand pack and well casing. A map illustrating the location of the monitoring wells is provided on Drawing 9 in Appendix A.

The monitoring wells were used to measure groundwater levels, collect samples for groundwater quality analyses, and estimate the hydraulic conductivity of the screened units. Monitoring well details are summarized in Table 1.

Borehole No.	Ground Elevation (m)	Well Depth (m)	Well Diameter (mm)	Screen Length (m)	Screen Unit
BH20-02	226.9	3.95	51	1.5	Silty clay (Till)
BH20-06	231.0	3.92	51	1.5	Silty clay (Till)
BH20-08	233.0	3.90	51	1.5	Silty clay (Till)
BH20-12	237.4	3.43	51	1.5	Sand (Fill)

Table	1 –	Mon	itorina	Well	Details
TUDIC		mon	noring	W CII	Detunis

BH20-16	239.7	3.92	51	1.5	Silty clay (Till)
BH20-19	242.4	3.72	51	1.5	Silty clay (Till)
BH20-20	243.0	3.89	51	1.5	Silty clay (Till)
BH20-24	245.9	3.81	51	1.5	Silty clay (Till)

3.2.1 Groundwater Levels

Groundwater levels in the monitoring wells were measured manually between May 26, 2020, and August 24, 2020, as summarized in Table 2.

Mall ID	May 26, 2020		June 9, 2020		June 11, 2020		August 24, 2020	
Well ID	Depth (m)	Elev. (m)	Depth (m)	Elev. (m)	Depth (m)	Elev. (m)	Depth (m)	Elev. (m)
BH20-02	3.25	223.65	NM	NM	NM	NM	3.23	223.67
BH20-06	3.01	227.99	NM	NM	NM	NM	3.01	227.99
BH20-08	2.99	230.01	NM	NM	2.82	230.18	2.94	230.06
BH20-12	2.83	234.57	NM	NM	NM	NM	3.08	234.32
BH20-16	3.05	236.65	NM	NM	2.89	236.81	3.07	236.63
BH20-19	2.14	240.26	NM	NM	NM	NM	2.13	240.27
BH20-20	1.05	241.95	1.05	241.95	NM	NM	1.08	241.93
BH20-24	2.23	243.67	2.44	243.46	NM	NM	2.24	243.66

Table 2 – Measured Groundwater Levels in Monitoring Wells

NM: Not Measured

The water level elevations in the monitoring wells ranged from 223.65 m to 243.67 m. The highest groundwater level (Elev. 243.67 m; depth 2.23 m) was measured in BH20-24 and the lowest water level (Elev. 223.65 m; depth 3.25 m) was measured in BH20-02.

Based on our conceptual understanding of the local hydrogeology, the monitoring wells are considered to be screened within the unconfined overburden and the water levels recorded from the monitoring wells are interpreted to be representative of the shallow groundwater table. Groundwater levels collected on August 24, 2020 indicated that shallow groundwater flows from northwest to southeast toward the tributary of Humber River, following local topography.

3.2.2 Hydraulic Conductivity

Single-well response tests (slug tests) were conducted between June 9, 2020 and June 17, 2020 in four selected monitoring wells. Falling head tests were carried out to estimate the in-situ hydraulic conductivity (K) of the screened overburden materials. Hydraulic conductivity estimates were obtained using the Hvorslev method (1951). Estimated K values are presented in Table 3. The slug test analyses are presented in Appendix D.

Well ID	Bottom of Screen Elevation (m)	Top of Screen Elevation (m)	Screened Material	Hydraulic Conductivity (K) (m/s)
20-08	229.10	230.63	Silty clay (Till)	1.1 x 10⁻ ⁸
20-16	235.78	237.30	Silty clay (Till)	1.1 x 10 ⁻⁷
20-20	239.11	240.64	Silty clay (Till) Silty clay (Fill)	5.2 x 10 ⁻⁷
20-24	242.09	243.61	Silty clay (Till)	9.8 x 10 ⁻¹⁰

Table 3 – Estimated Hydraulic Conductivities

The estimated in-situ K values for the silty clay till materials range from 9.8×10^{-10} m/s to 5.2×10^{-7} m/s. A portion of the well screen and sand pack for the well at Borehole 20-20 was within silty clay fill and may have resulted in a somewhat higher hydraulic conductivity estimate. The geometric mean of the slug tests conducted solely in the silty clay till is 1.1×10^{-8} m/s.

3.2.3 Infiltration Testing for LID Applications

Guelph Permeameter testing was conducted at nine locations on the grass boulevards on the west side of Highway 50 adjacent to the selected drilled boreholes. The locations of the boreholes are shown on Drawing 9 in Appendix A.

For each infiltration test, a hole was augered using a 6 cm diameter hand auger to a depth of between 30 cm and 60 cm. Infiltration tests were performed in the hole using a Guelph Permeameter. The device maintains a constant water column in the hole using the Marriott Principle. The water that infiltrates into the ground is replenished by the Guelph Permeameter reservoir and the rate of water level drop in the reservoir is indicative of the infiltration rate into the hole. The infiltration rate is estimated by measuring the change in water level in the Guelph Permeameter reservoir once steady state is reached as indicated by a minimum of three consecutive intervals with the same or similar change in water level. The field saturated hydraulic conductivity (K_{fs}) calculations and results are presented in Appendix E.

The saturated hydraulic conductivity measured using the Guelph Permeameter was converted to an infiltration rate (T) for the purpose of designing the infiltration measures. The approximate relationship presented in the Low Impact Development Stormwater Management Planning and Design Guide (TRCA and CVC, 2010) was used for the conversion, as follows, where K_{fs} is in cm/s and T is in mm/hr:

$$K_{fs} = 6 \times 10^{-11} \times T^{3.7363}$$

The surface materials at the Site are mainly sand fill with some silt and gravel, with an estimated saturated hydraulic conductivity range between 2.7×10^{-5} cm/s and 1.8×10^{-3} cm/s. The corresponding infiltration rate for the sand fill ranged between 59 mm/hr and 101 mm/hr with a corresponding geometric mean infiltration rate of 72 mm/hr. The infiltration rate values are generally high and reflect the high content of sand and gravel in the shallow fill at the Site. A summary of the results is provided in Table 4.

Test ID	Test Depth (m)	Materials	Saturated Hydraulic Conductivity (cm/s)	Infiltration Rate (mm/hr)
Test 20-02	0.56	Sand and Gravel (Fill)	1.1 x 10 ⁻³	88
Test 20-06	0.48	Sand (Fill)	7.8 x 10 ⁻⁴	80
Test 20-08	0.41	Sand (Fill)	1.8 x 10 ⁻³	101
Test 20-12	0.48	Sand (Fill)	1.7 x 10 ⁻³	99
Test 20-14	0.37	Sand and Silt (Fill)	2.4 x 10 ⁻⁴	59
Test 20-18	0.54	Sand (Fill)	2.7 x 0 ⁻⁵	43
Test 20-20	0.46	Sand (Fill)	5.4 x 10 ⁻⁴	73
Test 20-22	0.33	Sand (Fill)	3.9 x 10 ⁻⁴	66
Test 20-24	0.3	Sand (Fill)	2.9 x 10 ⁻⁴	61

Table 4 – Estimated Saturated Hydraulic Conductivity and Infiltration Rate

As previously described in Section 3.2.2, the geometric mean of hydraulic conductivity of the silty clay till was 1.1×10^{-8} m/s. The converted infiltration rate is 14 mm/hr. As expected, locations underlain by till deposits exhibited lower infiltration rates than locations underlain strictly by the more permeable sand fill.

Based on a review of the estimated infiltration rates provided above, the estimated infiltration rates for the sand fill were higher than the 15 mm/hour threshold recommended in the stormwater Management Planning and Design Manual, which indicates the fill materials at the Site may be suitable for implementation of infiltration Best Management Practices (BMPs). However, the feasibility for implementing infiltration LIDs within the silty clay till materials is limited due to the low infiltration rate associated with the silty clay till.

For design purposes, if the LID measures can be placed in a location where there is 1.5 m or more of sand fill below the base, then a safety correction factor of 2.5 would apply and the typical design infiltration rate would be approximately 29 mm/hr (72 mm/hr divided by 2.5). If the base is in sand fill but silty clay till is within 1.5 m of the base, then a safety correction factor of 4.5 would typically apply because the silty clay till infiltration rate is 5.1 times smaller than that of the sand fill. In this case a design infiltration rate of 16 mm/hr would apply (72 mm/hr divided by 4.5). If the LIDs are proposed to be installed within the silty clay till materials, the estimated infiltration rates should be divided by a safety correction factor of 2.5 to calculate the design infiltration rate, which in this case would be approximately 5.6 mm/hr (14 mm/hr divided by 2.5).

In addition to infiltration rate requirements, the groundwater table must be sufficiently below the infiltration measure such that the storm water may infiltrate into the ground.

3.2.4 Groundwater Quality

Groundwater samples were collected on August 24, 2020 from monitoring wells at Boreholes 20-24, 20-20, 20-16, and 20-08 at the Site using a disposable PVC bailer. The collected samples were sent to SGS Laboratories for analysis of parameters in the Peel Sewer Use By-Law 53-2010. The laboratory analytical results and Certificate of Analysis are included in Appendix F.

A review of the analytical results indicated that all groundwater samples exceeded the storm sewer discharge criteria for total suspended solids (TSS) and manganese. The samples collected from Boreholes 20-24 and 20-16 also exceeded the storm sewer discharge criteria for total Kjeldahl Nitrogen. All other tested parameters met the Peel Storm Sewer Use By-Law criteria.

The groundwater sample collected from Borehole 20-16 exceeded the By-Law 53-2010 criteria for sanitary sewers for TSS. All other analyzed parameters met the applicable water quality criteria.

Based on conditions typically encountered for open excavations in till, it is expected that groundwater would require treatment prior to direct discharge into surface water or any sewers. Treatment to remove suspended sediment and associated metals, and possible adjustment of

temperature if discharging to surface water, would likely be the minimum requirements. Where feasible, it is recommended that groundwater should be discharged at least 30 m away from any surface water bodies.

Pre-treatment of dewatering discharge will be the responsibility of the dewatering contractor to ensure that the quality of the dewatering discharge effluent meets applicable discharge criteria. Should the dewatering discharge be contaminated such that the groundwater cannot be treated to the appropriate water quality criteria, the dewatering contractor shall be responsible for transporting the contaminated groundwater off-site for disposal at an appropriate licensed facility.

4 DEWATERING ASESSMENT

At this time, there is not sufficient design information to provide preliminary dewatering estimates for the replacement and/or improvements to the roadside drainage ditches and culvert crossings along the Regional Road Highway 50. Once engineering drawings for structural drainage improvements are finalized, detailed dewatering estimates should be completed during detailed design, well in advance of construction to support permitting requirements.

Based on our understanding of the geology and water table at the Site, it is anticipated that minimal dewatering will be required for the construction of culverts or improvement to the storm drainage infrastructure. It is anticipated that water may be perched locally within the sand fill and that it would be of limited volume. It is further anticipated that groundwater flow rates through the silty clay till would be low due to the relatively low hydraulic conductivity of that soil. However, water taking estimates must include rainfall and surface water if they cannot be kept separate from groundwater, and, depending on the number and size of the excavations, the need for some form or water taking permit is likely.

The Zone of Influence (ZOI) from the edge of any excavations in the silty clay till is anticipated to be localized and less than 10 m.

If the detailed investigation indicates that dewatering is required, then the estimated budgeted peak flow rate will determine the type of water taking permission that is required. If the budgeted peak water taking rate is greater than 50,000 L/day but less than 400,000 L/day, then registration on the Environmental Activity and Sector Registry (EASR) is required, and a Water Taking Plan and Water Discharge Plan are required. If the flow rate exceeds 400,000 L/day, then a Category 3 PTTW must be applied for and obtained from MECP. The application must include a Hydrogeological Study in accordance with permit requirements.

Water that is removed from excavations for dewatering must be discharged or disposed of in accordance with current regulations, whether to the natural environment or to a sewer system. The Water Discharge Plan in the case of an EASR registration or the PTTW and associated Hydrogeological Study will specify conditions on the discharge of the groundwater to the environment.

5 IMPACT ASSESSMENT

Lowering of the shallow groundwater level could potentially reduce the groundwater discharge to nearby natural environmental features and ground water users, and could potentially result in settlement or ground loss, although the likelihood of significant impacts is low due to the low hydraulic conductivity of the silty clay till. Any potential impacts during construction dewatering are expected to be temporary in nature. These potential impacts, however, need to be monitored and managed to minimize impact.

During the detailed design, a dewatering assessment should be completed to evaluate the potential need for construction dewatering during the installation of structures and dewatering rates and volumes as well as the potential ZOI should be estimated. These efforts would be completed as part of hydrogeological investigation for detailed design and will assess potential impact as a result of groundwater taking and provide mitigation measures.

As discussed previously, it is anticipated that the anticipated ZOI is less than 10 meters and minimal construction dewatering is required for the Site. Potential impacts associated with the construction dewatering may include the following:

- Impacts to Surface Water and the Natural Environment: Excavations have some potential to reduce groundwater contributions to surface water bodies and natural environmental features if within the ZOI and open for extended periods. However, considering the low hydraulic conductivity, the slow rate of drainage within the silty clay till and the small ZOI, there is not expected to be a discernible decrease in water contribution to surface water or the natural environment.
- Impacts to Groundwater Users: No domestic well users are located within the ZOI; therefore, impacts to groundwater users are not expected. However, the ZOI should be re-assessed during detailed design to determine whether a private well survey is warranted.
- **Geotechnical Impacts:** The lowering of groundwater levels can induce ground settlement due to an increase in the effective stress. At the proposed excavations, ground settlements associated with the dewatering activities are anticipated to be minor based

on the anticipated groundwater drawdowns discussed in this report; however, an assessment of settlement potential should be completed during detailed design, prior to construction. Also, dewatering through the use of poorly designed wells and extraction systems may draw in silt and sand and cause ground loss; however, the low hydraulic conductivity of the silty clay till and the shallow anticipated excavation depths are not anticipated to result in this impact.

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Water Taking Permitting

As discussed in Section 5, a water taking permit may be required to conduct the construction. Depending on the outcome of further analysis and potentially additional investigation following detailed design, registration on the EASR and preparation of a Water Taking Plan and Water Discharge Plan in the case of peak water taking rates between 50,000 and 400,000 litres per day or application for a Category 3 PTTW and required Hydrogeological Study for water taking rates exceeding 400,000 litres per day may be required.

The permit application fee from MECP for a Category 3 PTTW is currently \$3,000 and the application will be subject to an administrative review as well as a technical review. MECP may request additional information or testing. The review process typically takes three to five months following submission. The registration fee from MECP for registration of water taking for construction dewatering is currently \$1,190 and no review period is required.

It would be possible to conduct limited construction dewatering without a permit provided the total daily water taking rate is restricted to 50,000 litres per day or less; however, many elements will not be feasible to construct with that limitation, and the rate of construction of feasible elements may be restricted until a water taking permit is obtained.

Additional terms and conditions may apply as determined by the water taking permit process, including performance, monitoring and reporting requirements among others.

6.2 Groundwater Discharge

Water quality observed during construction will vary from the results obtained herein based on a number of factors. An experienced dewatering contractor and water treatment contractor are recommended to be retained to design and operate dewatering and treatment operations as required. Pre-treatment of dewatering discharge would be the responsibility of the contractor to ensure that the quality of the dewatering discharge effluent meets Provincial Water Quality Objectives (PWQO) criteria or Peel Region Sewer Use By-Law No. 53-2010 as applicable, and

determine if more extensive or specific treatment measures are required. Should the dewatering discharge be contaminated such that the groundwater cannot be treated to the appropriate water quality criteria, the contractor would be responsible for managing the water, including potentially storage and further treatment or transporting the contaminated groundwater off-site for disposal at an appropriate licensed facility.

A discharge permit would be required from the Region of Peel to discharge to a Region of Peel sewer. Discharge to the natural environment may require consultation with MECP, and potentially TRCA and MNRF depending on the discharge location.

6.3 Low Impact Development

Silty clay till was encountered below the fill soils in all boreholes (with the exception of Borehole 20-12) at depths ranging between 0.6 m and 3.6 m and extended to depths of approximately 3.7 m to 4.4 m. Based on the infiltration rates presented herein, the estimated infiltration rates for the silty clay till material encountered across the Site (BH20-09 and BH20-24) were less than the 15 mm/hour threshold specified in the Stormwater Management Planning and Design Manual, which indicate the Site may not be suitable for implementation of infiltration. Infiltration into the sand fill that was identified may be feasible if sufficient thickness and separation from the groundwater table can be identified. An appropriate safety factor as specified in the Low Impact Development Stormwater Management Planning and Design Guide should be applied to the estimated infiltration rate when designing infiltration LIDs to account for the natural variation in infiltration rate as discussed in Section 4.2.3.

Based on review of the existing site conditions and infiltration testing results, the designer may elect to modify the proposed bottom elevation of the LID measures. Additional field infiltration tests may be required to confirm the soil infiltration rates if any alternate locations or depths for infiltration LIDs are proposed in future.

Groundwater depths at the Site were typically between 1 and 3 m, which may limit the effectiveness of infiltration measures.

6.4 Control of Impacts and Monitoring

The following measures are recommended to mitigate the potential for the dewatering activities to cause negative impacts as assessed previously:

• Monitoring of water levels in the monitoring wells prior to, during, and following construction.

- Monitoring of water quality for groundwater collected within the excavation dewatering systems to confirm the water quality is appropriate for the selected discharge option. Monitoring should include visual observations for contamination such as sheen or pure product, as well as for excessive sediment in the discharge, which could be an indication of ground loss.
- Where possible, it is recommended that groundwater should be discharged at least 30 m away from any water bodies including streams.
- If discharge to sewers or surface water bodies is proposed, treatment of groundwater to meet acceptable levels is required. Suitable treatment would likely include measures to address suspended sediment and associated metals and is anticipated to require additional treatment based on findings to date. The operation and monitoring of discharge facilities should be carried out by an experienced dewatering contractor and water treatment contractor familiar with fisheries and water quality requirements.
- Where discharge is to ground surface or water course, temporary erosion control measures should be developed and installed to control erosion at the discharge points. Additional water quality requirements may be imposed by MECP, TRCA and MNRF.
- Long-term impacts will need to be addressed through the implementation of best management practices to help increase the amount of infiltration to the aquifer system and minimize the environmental impacts of the development.
- Installation of clay plugs or similar are recommended for any open cut trenches to limit the preferential movement of groundwater along the trench.

6.5 Future Work

Additional hydrogeological investigation and analysis will be required to support detailed design. The following recommendation are provided based on the findings of the hydrogeological investigations:

- Additional groundwater level monitoring should be conducted to capture further seasonal variation, and additional groundwater sampling may be warranted depending on potential discharge location. Infiltration testing may also be advisable depending on infiltration concepts that may be developed.
- During the detailed design stage, it will be necessary to refine the analysis of the hydrogeological conditions along the Site to estimate dewatering rates. The ZOI and dewatering rates as a result of construction-related dewatering will be estimated. These

findings will be used to confirm the water takings requirements and the appropriate approvals from the MECP prior to commencement of construction. They will also assist in determining whether a private well survey is warranted.

• Monitoring wells should be decommissioned in accordance with O. Reg. 903 if they are no longer in use to prevent the creation of vertical conduits for contaminant transport.

7 CLOSURE

We trust that this report provides the information you require at this time. If you have any questions regarding this report, please contact the undersigned at your earliest convenience.

Yours truly, Thurber Engineering Ltd.

Alireza Hejazi, Ph.D., P.Eng. Senior Hydrogeologist

David Hill, M.A.Sc., MBA, P.Eng., P.Geo. Senior Hydrogeologist / Environmental Engineer

Renato Pasqualoni, P.Eng. Review Principal

8 **REFERENCES**

- Chapman, L.J. and Putnam, D.F. 1984. *The Physiography of Southern Ontario*, Third Edition. Ontario Geological Survey, Ontario Ministry of Natural Resources.
- Clayton, J., Hayes K., Heaton, M. G. and, Lawrie, D. 2004. Humber River Fisheries Management Plan. Published by the Ontario Ministry of Natural Resources and the Toronto and Region Conservation Authority.
- Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Groundwater Observations. U.S. Army Corps Engrs. Waterway Exp. Sta. Bull. 36, Vicksburg, Miss.

Ministry of the Environment, Conservation and Parks. 2020. Source Intake Protection Atlas.

- Ministry of the Environment, Conservation and Parks. 2019. Permit to Take Water Database.
- Ministry of the Environment, Conservation and Parks. 2019. Water Well Information System.
- Ministry of Natural Resources and Forestry, Natural Heritage Information Centre database Make a Heritage Map. Accessed November 2016, Queen's Printer for Ontario, 2015.
- Ontario Ministry of the Environment and Climate Change. 2003. Stormwater Management Planning and Design Manual.
- Ontario Geological Survey. Bedrock Geology of Ontario Seamless Coverage Data Set 6. 2005.
- Ontario Geological Survey. Quaternary geology, seamless coverage of the province of Ontario: Ontario Geological Survey, Data Set 14. 1997.
- Toronto and Region Conservation Authority, 2008. Humber River Watershed Plan Geology and Groundwater Resources.
- Toronto and Region Conservation Authority, 2008. Humber River Watershed, Scenario Modelling and Analysis Report.
- Toronto and Region Conservation Authority, Stormwater Management Criteria, August 2012.
- Thurber Engineering Ltd. Geotechnical Investigation Report. Preliminary Design for Drainage Improvements, Regional Road Highway 50 From Mayfield Road to Healey Road, The Region of Peel, August 2020.

Appendix A

Drawings

DESIGNED:	DRAWN:	APPROVED:
AH	AH	DH
DATE: AUGUST 08, 2020	SCALE: 1:20,000	DRAWING NO. 28262-1

	DESIGNED:	DRAWN:	APPROVED:
	AH	AH	DH
•	DATE:	SCALE:	DRAWING NO.
	AUGUST 08, 2020		28262-6

DESIGNED:	DRAWN:	APPROVED:
АН	АН	DH
DATE: AUGUST 08, 2020	SCALE: 1:20,000	DRAWING NO. 28262-7

Huy so Hug so Hug so Local Hage so Local Local Hage so Local Local Hage so Local Local Hage so Local	Albient and a second se
	20-16 20-12
Coleraine Dr	
LEGEND:	10 0 20 m TIM 17 NAD 83
 Monitoring Well Railway Site Watercourse 	HYDROGEOLOGICAL INVESTIGATION PRELIMINARY DESIGN FOR DRAINAGE IMPROVEMNETS HIGHWAY 50 FROM MAYFIELD ROAD TO HEALEY ROAD TOWN OF CALEDON, ON MONITORING WELL LOCATIONS PROJECT No. 28262

DESIGNED:	DRAWN:	APPROVED:
AH	AH	DH
DATE: AUGUST 08, 2020	SCALE: 1:12,000	DRAWING NO. 28262-9

FILENAME: H:\Drafting\28000\28262\TED-28 PLOTDATE: Aug 6, 2020 - 4:21 PM

Appendix B

MECP Well Records

MECP Well Record Summary Table

Well ID	UTM Coordinates	UTM Coordinates	Date Completed	Depth to Bedrock	Static Level	Well use
	Easting	Northing				
4900316	603685.6	4856848	1967-12-01	0	36.6	Supply Wells
4900361	604228.6	4856559	1953-11-25	0	0	Abandoned
7048899	603899	4856857	2007-07-10	0	0	Observation Well
7230417	603801	4856817	2014-08-06	0	0	Observation Well
7205855	602829	4857940	2013-07-11	0	0	unknown
7196589	603628	4856894	2012-12-13	0	0	Observation Well
7212292	604840	4855812	2013-06-12	0	0	Observation Well
4904182	604405.6	4856303	1973-02-15	0	18.3	Supply Wells
4904495	603804.6	4857065	1974-08-26	58.8	27.4	Supply Wells
7230415	603819	4856840	2014-08-06	0	0	Observation Well
6907219	604868.6	4855867	1964-08-31	37.5	27.4	Supply Wells
7257669	604214	4857167	2016-01-15	0	0	Monitoring and Test Hole
7235624	604478	4856624	2014-11-03	0	30.5	Abandoned
4904497	603906.6	4857314	1974-08-13	45.1	48.2	Supply Wells
4903570	604394.6	4856223	1970-09-29	47.5	0	Abandoned
4900368	603475.6	4857303	1963-10-31	56.4	21.3	Supply Wells
4903571	604464.6	4856223	1970-10-06	44.8	29	Supply Wells
6926696	605231.9	4855823	2002-09-05	0	0	Abandoned
7231573	604427	4856215	2014-10-16	0	0	Monitoring and Test Hole
4900362	604447.6	4856326	1954-08-07	0	32.3	Supply Wells
4904191	603848.6	4856975	1973-09-10	0	21.3	Supply Wells
7113171	604789	4855689	2008-08-27	0	0	Abandoned
7104307	604789	4855689	2008-04-08	0	0	Observation Well
7177345	604496	4856555	2011-12-28	0	33	Abandoned
4900369	603449.6	4857482	1964-11-15	0	40.5	Supply Wells
4905070	604314.6	4856383	1977-03-15	0	32	Supply Wells
7236035	604498	4856398	2014-10-14	0	0	Abandoned
4903323	604664.6	4856173	1969-09-03	50.3	14.3	Supply Wells
6917561	604947	4855780	1984-04-26	36	23.5	Supply Wells
7231571	604441	4856258	2014-10-16	0	0	Monitoring and Test Hole
7172124	604060	4856764	2011-10-25	0	0	Monitoring and Test Hole
7212298	604898	4856060	2013-06-12	0	0	Observation Well
7236037	604417	4856773	2014-10-14	0	0	Abandoned
4903208	604614.6	4856233	1969-03-28	0	0	Abandoned
7263877	603719	4857108	2016-05-11	0	0	Observation Well
4903682	603554.6	4856988	1971-08-23	0	40.2	Supply Wells
4903711	604464.6	4856603	1971-08-25	0	2.4	Supply Wells
4909668	603095	4857366	2004-11-10	0	0	Observation Well

MECP Well Record Summary Table

Well ID	UTM Coordinates	UTM Coordinates	Date Completed	Depth to Bedrock	Static Level	Well use
	Easting	Northing	Date completed			
4905910	604514.6	4855623	1981-03-03	41.5	0	Supply Wells
4903257	604624.6	4856173	1969-06-13	0	24.4	Supply Wells
7212296	604324	4857054	2013-06-12	0	0	Observation Well
4904179	604523.6	4856446	1973-07-18	0	20.7	Supply Wells
7196141	603831	4857064	2013-01-17	0	0	Monitoring and Test Hole
7231572	604460	4856239	2014-10-16	0	0	Monitoring and Test Hole
7245314	604487	4855947	2015-07-16	0	0	Observation Well
7245315	604480	4855849	2015-07-16	0	0	Observation Well
7212225	604256	4856656	2013-10-18	0	0	unknown
4908578	603517	4856992	2000-03-17	0	38.4	Supply Wells
7263868	603668	4857246	2016-05-11	0	0	Observation Well
4909892	604104	4856730	2005-07-03	0	0	Supply Wells
7162056	604773	4855677	2011-04-07	0	0	Monitoring and Test Hole
6918791	604700	4856508	1987-02-05	55.2	29	Supply Wells
4905188	603834.6	4857013	1977-06-02	57.3	40.5	Supply Wells
7232223	604359	4856881	2014-10-27	0	0	unknown
7245851	603359	4856909	2015-05-21	0	0	unknown
7212293	604788	4855880	2013-06-12	0	0	Observation Well
7263876	603742	4857240	2016-05-10	0	0	Observation Well
4903812	604464.6	4856298	1972-04-25	0	28	Supply Wells
7162058	604877	4855699	2011-04-07	0	0	Monitoring and Test Hole
4904567	604517.6	4856281	1974-10-15	0	18.9	Supply Wells
7172123	604045	4856837	2011-10-25	0	0	Monitoring and Test Hole
7196588	603701	4856983	2012-12-13	0	0	Observation Well
4904931	604514.6	4856423	1976-05-13	0	29.3	Supply Wells
4900364	603876.6	4856887	1963-09-26	0	37.8	Supply Wells
7168757	604060	4856717	2010-03-09	0	0	unknown
7212297	604616	4856420	2013-06-12	0	0	Observation Well
4903675	604344.6	4856883	1971-06-16	0	35.1	Supply Wells
4909587	603200	4857451	2004-10-14	0	0	Observation Well
7143512	603839	4856833	2009-09-11	0	0	Monitoring and Test Hole
7051218	603826	4856896	2007-08-31	0	0	Abandoned
4905282	603664.6	4856973	1977-11-04	0	28.7	Supply Wells
7162057	604869	4855728	2011-04-07	0	0	Monitoring and Test Hole
7219133	604227	4856836	2014-03-27	0	0	Observation Well
4900367	603928.6	4856959	1967-10-13	0	34.1	Supply Wells
6916207	604964.6	4855773	1981-11-03	36	24.1	Supply Wells
4904095	603834.6	4857203	1973-03-15	0	38.7	Supply Wells
MECP Well Record Summary Table

Well ID	UTM Coordinates	UTM Coordinates	Date Completed	Denth to Bedrock	Static Level	Well use
	Easting	Northing				Well use
4903666	604139.6	4856763	1971-06-16	0	36.6	Supply Wells
6917973	605088.6	4855609	1985-07-10	0	0	Abandoned
7263862	603791	4857206	2016-05-10	0	0	Observation Well
4900365	603725.6	4857032	1963-12-11	59.1	37.2	Supply Wells
7149490	603792	4857314	2010-07-15	0	0	Monitoring and Test Hole
7245316	604535	4855896	2015-07-16	0	0	Observation Well
4900370	603521.6	4857410	1964-07-02	0	0	Abandoned
7149489	603784	4857496	2010-07-15	0	0	Monitoring and Test Hole
6907218	604605.6	4856485	1964-07-16	0	0	Abandoned
7263863	603658	4857161	2016-05-11	0	0	Observation Well
7230416	603826	4856810	2014-08-06	0	0	Observation Well
4900317	603432.6	4857241	1959-07-20	0	0	Abandoned
7132481	604868	4856295	2009-09-14	0	0	Monitoring and Test Hole
7132481	604917	4856138	2009-09-14	0	0	Monitoring and Test Hole
7132481	605031	4856053	2009-09-15	0	0	Monitoring and Test Hole
7205569	604227	4856816	2013-04-17	0	0	unknown
4904849	603660.6	4857133	1976-01-15	0	39.6	Supply Wells
7206967	603319	4857302	2013-07-03	0	0	Abandoned
6917985	605088.6	4855609	1985-04-22	0	27.7	Supply Wells
6912218	605210.6	4856207	1974-04-11	50.3	31.4	Supply Wells
7149488	603777	4857485	2010-07-15	0	0	Monitoring and Test Hole
7194728	604278	4856876	2012-10-11	0	0	unknown
7196142	603802	4857091	2013-01-17	0	0	Monitoring and Test Hole
6917563	605234.6	4855823	1984-05-04	0	24.4	Supply Wells
4900366	603925.6	4856908	1967-06-14	0	31.7	Supply Wells
7247414	604191	4857096	2015-08-13	0	0	Observation Well
4900318	602644.6	4857602	1958-01-15	18.3	42.1	Supply Wells
7235626	604500	4856565	2014-11-03	0	0	Abandoned
7196590	603653	4856928	2012-12-13	0	0	Observation Well
7229211	604224	4856821	2014-09-17	0	0	unknown
7196143	603797	4857038	2013-01-17	0	0	unknown
7143511	603836	4856847	2009-09-11	0	0	Monitoring and Test Hole
4903715	604094.6	4856773	1971-11-12	0	35.1	Supply Wells
7196144	603775	4857041	2013-01-17	0	0	Monitoring and Test Hole
4900363	604118.6	4856695	1966-10-10	0	0	Abandoned
7270670	604246	4857120	2015-11-13	0	0	unknown
4903187	604064.6	4856743	1969-02-24	47.5	40.2	Abandoned
7110588	604717	4856503	2008-07-31	0	0	unknown

Appendix C

Record of Borehole Sheets

PR		T · HWY 50 Drainage Impr	REC	O	RD) (OF BOREHOLE 2	0-01	Project	No. 28262
LO ST.	CATIC	DN : D : March 11, 2020							SHEET	1 OF 1
CC	MPLE	TED : March 11, 2020		_	١	N 4 8	855 949.5 E 604 798.4		DATUM	Geodetic
DEPTH SCALE (metres)	BORING METHOD	SOIL PROFILE	(m) STRATA PLOT (m) (m)	NUMBER	MPL IAPE	BLOWS/0.3m	COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT	on EAR vol 10. cd, ker al nat V - ● Q - ★ rem V - ● Cpen ▲ 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp I 0 20 30 40 10 20 30 40 1 1	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE ASPHALT: (200mm)	226.50 0.00							
-		SAND and GRAVEL, brown, moist: (FILL)	0.20	1	GS			0		
- 1 -		CLAY, silty, some to trace sand, trace gravel, firm to hard, brown to grey, moist: (TILL)	0.76	2	SS	6		φ		
-2	em Augers			3	SS	10	Grain Size Analysis: Gr 0%/ Sa 18%/ Si 47%/ Cl 35%	0		
	Solid St			4	SS	21		0	2	
				5	ss	55		•		
-4			222.08	6	SS	47		0		
- - 5		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.	4.42							
- - -6										
- 7							7			
-				<						
-8 - -										
- 9 -										
		GROUNDWATER ELE		5	<u> </u>	Z w	ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : SZ		

PODUCT: ::::::::::::::::::::::::::::::::::::				RE	CO	R	0 0	OF BOREHOLE 2	20-03		
BUT THE IN HARD SILL POPULATION THE	PF		CT : HWY 50 Drainage Impr	ovement						Project N	No. 28262
No. SOL PROPILE SAMPLES COMMENTS Several state	ST	TARTI OMPL	ED : March 11, 2020 ETED : March 11, 2020				N 4	856 103.1 E 604 652.0		SHEET [·] DATUM	1 OF 1 Geodetic
Strength DESCRIPTION Image: Provide the strength The strengt The stresttrength The strength	ш	8	SOIL PROFILE		s	AMP	LES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - PQ - X	. ()	
APPHALT: (200m) 2000 2000 2000 1 Mail Store grave does brown most 2000 2000 0 2 Mail Store grave does brown most 2000 2000 0 2 Mail Store grave does brown most 2000 2000 0 3 Mail Store grave does 2000 2000 0 4 8000 8000 1000 0 0 4 8000 8000 1000 0 0 4 8000 8000 1000 0 0 5 Hondow does 10000 10000 10000 6 Hondow does 100000 10000 100000 7 Hondow does 1000000 100000 1000000 9 Hondow does 10000000000 1000000000000000000000000000000000000	DEPTH SCAL (metres)	BORING METH	DESCRIPTION	STRATA PLOT (m) (m)		TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 ↓ WATER CONTENT, PERCENT wp ↓ ─ ─ ₩ ↓ 10 20 30 40	ADDITIONAL LAB. TESTINO	PIEZOMETER OR STANDPIPE INSTALLATION
Image: second secon	-		GROUND SURFACE ASPHALT: (200mm)	228	.20		-				
Image: State of the state	-		SAND, some gravel, dense, brown, moist: (FILL)		.20	GS	3		0		
2 0 0 3 10 0	- - 1 -				2	2 55	36		0		
13 Image: State of the	- -2	n Augers	CLAY, silty, some sand, trace gravel, stiff to hard, brown to grey, moist: (TILL)	226 10 1	.68	3 SS	5 12		0		
-4 -5 -5 -6 -0 -1 -1 -5 -5 -6 -6 -6 -6 -7 -6 -6 -7 -6 -7 <	- 3	Solid Sten			4	I SS	5 15				
4 BOOEBOELE AT 4420 COMPLETION COMPLETION COMPLETION COMPLETION SURFACE 23.70 4.40 5 BOOEBOELE AT 4420 COMPLETION COMPLETION SURFACE 23.70 4.40 6 BOOEBOELE AT 4420 COMPLETION SURFACE 23.70 4.40 7 BOOEBOELE AT 4420 COMPLETION SURFACE 14.00 9 BOOEBOELE AT 4420 COMPLETION SURFACE 14.00 9 BOOEBOELE AT 4420 COMPLETION 14.00					Ę	5 SS	6 44	Grain Size Analysis: Gr 1%/ Sa 14%/ Si 44%/ Cl 41%	0		
5 BÖDERLED ONTHER BORRHOLE BACKFLIED WITH BORRHOLE BACK	-4			223	.78	i se	6 44		•		
6 Image: Constraint of the second secon	- 5 -		END OF BURGHOLE AT 42/III. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.		.92						
7 Image: State of the s	- - -6										
8 Image: State of the s	- - - 7							2			
9 GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED SZ CHECKED CZ	-8					Y					
9 I											
GROUNDWATER ELEVATIONS	- 9										
WATER LEVEL UPON COMPLETION VATER LEVEL IN WELL/PIEZOMETER LOGGED : SZ CHECKED : CZ			GROUNDWATER ELE	VATION	٧S		-1				
			abla water level upon CC	MPLETIC	N	-	⊈ v	ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : SZ CHECKED : CZ		THURBER

PRC LOC STA COI es)		T : HWY 50 Drainage Impro DN : D : March 11, 2020 TED : March 11, 2020	ovemen	It					Project N	lo. 28262
ATS COI es) corre		D : March 11, 2020								
sCALE es)	гнор					N 4	856 244.6 E 604 507.7		SHEET DATUM	1 OF 1 Geodetic
sCAI	亡	SOIL PROFILE			SAMP	LES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - X	٦D	
DEPTH S (metro	BORING ME	DESCRIPTION	STRATA PLOT	LEV. EPTH (m)	NUMBER	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	Herry Open Open <t< td=""><td>ADDITIONA LAB. TESTIN</td><td>PIEZOMETER OR STANDPIPE INSTALLATION</td></t<>	ADDITIONA LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE	2	230.00						
		SAND, some gravel, brown, moist		0.20	1 GS	3		0		
4		CLAY , silty, some sand to sandy, trace gravel, stiff to hard, grey to brown, moist: (TILL)		0.61						
					2 SS	5 11		0		
-2	em Augers			-	3 55	32	Grain Size Analysis: Gr 6%/ Sa 21%/ Si 49%/ Cl 24%			
- 3	Solid Ste				4 SS	32		C		
				-	5 55	34		•		
-4			2	225.58	6 SS	3 24		0		
- 5		BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.								
-6										
- 7							2			
-8										
- 9										
		GROUNDWATER ELEV $\overline{\mathbb{Y}}$ water level upon co	VA I IC MPLET	JNS ION	-	⊈ v	ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : SZ		

				F	REC	O	RE) (OF BOREHOLE 2	20-07					
PF	ROJ	EC	T : HWY 50 Drainage Impro	over	nent								Proje	ect N	o. 28262
LC ST)CA ГAR	TIC TEL	N : D : March 11, 2020										SHE	ET 1	OF 1
C	OMF	PLE	TED : March 11, 2020					N 4	856 382.3 E 604 369.0				DAT	UM	Geodetic
Щ	G	100	SOIL PROFILE		-	SA	MPL	LES	COMMENTS	SHEAR nat \ rem \		TH: Cu, KPa Q - X Cpen ▲	Ļ	Q	
DEPTH SCA (metres)		JRING MELL	DESCRIPTION	RATA PLOT	ELEV.	NUMBER	ТҮРЕ	OWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 WATER wp I		20 160 PERCENT		-AB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
		ы П		STI	(m)	_		В		10	20 3	30 40		_	
			ASPHALT: (200mm)		231.40 0.00										
			SAND and GRAVEL, grey, moist	۵ ۵	0.20	1	GS			b					
·				۵ ۵	020.64	_		-							
			SAND, some gravel, brown, moist	***	230.64										
- 1			CLAY, silty, some to trace sand, trace gravel, very stiff to hard, brown to grey, moiet. (TILL)		0.91	2	ss	11			,				
-				X											
-															
	gers					3	ss	34			2	\rightarrow			
Γ2	em Au														
	lid Ste								Grain Size Analysis:						
	S					4	SS	27	Gr 2%/ Sa 17%/ Si 41%/ Cl 40%	0					
- 3													\mathcal{P}		
-						_									
-						5	SS	40		•					
-4								0.5							
ŀ					226.08	6	SS	25			>				
-	┢		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY LIPON	1/3/	4.42			Ð							
			COMPLETION. BOREHOLE BACKFILLED WITH												
- 5			BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE							7					
			CONTROL.												
-						\land									
-6															
[
·						\leq									
									Q						
['															
-						<	\bigvee								
ŀ				\backslash											
-8															
-					1										
				1											
9/6/2(
GPJ															
8262.															
TEL-2						Ļ									
IR2S				vA		2									
URBE			- WATER LEVEL UPON CO	MPL	LETION	I	-1	⊷ v	VATER LEVEL IN WELL/PIEZ	JMETER		ED : SZ			
₽											SHEOK	02			THURBER

			F	REC	0	RE) (OF BOREHOLE 2	20-0	8						
PR LO	ROJEC ICATIO	T : HWY 50 Drainage Impro DN :	oven	nent									Ρ	roject N	No. 28262	
ST CC	ARTE	D : March 5, 2020 TED : March 5, 2020				I	N 4	856 471.9 E 604 254.7					S D	HEET ATUM	1 OF 1 Geodetic	
	8	SOIL PROFILE			SA	MPL	ES	COMMENTS	S	HEAR S		H: Cu, KP Q - 🗙	a	(1)		
DEPTH SCALE (metres)	BORING METHO	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		rem V - 40 & ATER C VP I		Cpen A 20 16 , PERCEN 	0 NT I)	ADDITIONAL LAB. TESTING	PIEZOMI OR STANDI INSTALL/	eter Pipe Ation
		GROUND SURFACE		233.00												
		SAND, some silt, some gravel, brown, moist: (FILL)		0.20	1	GS			0							
- 1		CLAY, silty, some sand to sandy, trace gravel, very stiff to hard, brown, moist: (TILL)		232.09 0.91	2	ss	15	Grain Size Analysis: Gr 4%/ Sa 24%/ Si 45%/ Cl 27%		0					Bentonite	
- - -2	em Augers				3	SS	35			0					Filter Sand	
- - - 3	Solid Ste	Very Stiff			4	ss	26							2	Softed Screen	
					5	ss	24			c	,					
-4				228.58	6	SS	42								Sand	
- 5		END OF BOREHOLE A1 4.42m. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen.		4.42												
		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Mar 05/20 Dry - May 26/20 3.00 230.00														
-6																
- 7 -								7								
- - -8					<											
- 9																
		GROUNDWATER ELE	VA ⁻	LIONS	ـــــ ک	1	I	1	<u> </u>	1	1					
		abla water level upon co	MPL	ETION		Ţ	V ₽	VATER LEVEL IN WELL/PIEZO	DMETE	R	LOGGE CHECK	D : 4 ED : 0	AF CZ		ТН	URBER

				F	REC	O	RE) (OF BOREHOLE 2	20-09		
PR LO		ECT	 HWY 50 Drainage Impro N 	oven	nent						Project	No. 28262
ST	AR		: March 5, 2020					NI 4	956 526 0 E 604 222 0		SHEET	1 OF 1
								N 4		SHEAR STRENGTH: Cu. KPa		Geodetic
DEPTH SCALE (metres)	ORING METHOR		DESCRIPTION	TRATA PLOT	ELEV. DEPTH (m)	NUMBER	3d/T	3LOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	nat V - Cpen ▲ rem V - Cpen ▲ 40 80 120 160 H H H WATER CONTENT, PERCENT wp → W W 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		,	GROUND SURFACE	٥ ٥	234.30		+				-	
			ASPHALT: (175mm)		0.00							
-			SAND, some silt, some gravel, brown, moist: (FILL)		0.18	1	GS					
-						-			-	Ŭ		
- 1		-	CLAY, silty, sandy to some sand, trace gravel, stiff to firm, brown, moist: (TILL)		233.39 0.91	2	ss	8	Grain Size Analysis: Gr 4%/ Sa 31%/ Si 44%/ Cl 21%	0		
	rgers					3	ss	4				
-2	olid Stem A											
	S		Very stiff to hard			4	SS	20		•		
- 3						5	ss	31		•		
-4					230.24	6	SS	50/ 0.10		0		
			END OF BOREHOLE AT 4.06m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.		4.06							
- 5							K					
-6												
						\langle						
-7									2			
- - -8												
- 9 - 9			//									
-												
				VA	TIONS	3	_	_				
			$\overline{\checkmark}$ water level upon CO	MPL	ETION			L v	VATER LEVEL IN WELL/PIEZO	DMETER LOGGED : AF CHECKED : CZ		THURBEI

				REC	O	RC) C	OF BOREHOLE 2	20-10		
PF	ROJE	CT : HWY 50 Drainage Impi	rover	nent						Project	No. 28262
ST	ART	ED : March 5, 2020								SHEET	1 OF 1
CC	OMPL T	ETED : March 5, 2020			_		N 4 8	856 567.9 E 604 157.8			Geodetic
ΓE	DOH.	SOIL PROFILE			SA	MPL	.ES	COMMENTS	nat V - ♥ Q - X rem V - ♥ Cpen ▲	RGA	DIEZOMETED
DEPTH SCA (metres)	BORING MET	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 80 120 160 WATER CONTENT, PERCENT wp I 0 20 30 40	ADDITION/ LAB. TESTII	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE	0,	235.80							
		ASPHALT: (200mm)		0.00							
		SAND, some silt, some gravel to gravelly, brown, moist: (FILL)		0.20	1	69					
ŀ					<u> </u>						
- 1		Dense			2	SS	35		0		
-2	ר Augers	Compact			3	SS	13	Grain Size Analysis: Gr 22%/Sa 54%/ Si & Cl 24%	0		⊻ .
-	id Sten										
-	Sol	Loose, wet			4	SS	9				
- 3										\mathcal{I}	
ľ									0		
ŀ		Very loose		232.29	5	SS	3				
ŀ		CLAY, silty, some sand, trace gravel, stiff to very stiff, brown to grey, moist: (TILL)		3.51							
4											
- 4					6	SS	29				
ŀ	\vdash		122	231.38							
		BOREHOLE OPEN AND WATER LEVEL AT 2.1m UPON COMPLETION.									
5		BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS,									
- 5		SURFACE.									
			1								
-											
					\geq)				
-0							(
-					/_						
-					\leq						
-								7			
- 7					\backslash						
				\backslash							
-						1					
-											
-8											
[
-											
- 9											
		GROUNDWATER FUE			Ļ						
1			- v A	ETION	, ,		1.4				
		- WATER LEVEL UPON CC	JMPI	LETION	I		- vv	ATER LEVEL IN WELL/PIEZ	JIVIETEK LOGGED : AF CHECKED : CZ		
									· · · · · · ·		INUKBER

			F	REC	0	R) (OF BOREHOLE 2	20-11		
PF LC	ROJEC	T: HWY 50 Drainage Impr ON:	over	nent						Project	No. 28262
ST CC	TARTE OMPLE	D : March 10, 2020 ETED : March 10, 2020					N 4	856 638.0 E 604 108.5		SHEET DATUN	1 OF 1 1 Geodetic
щ	DO	SOIL PROFILE			SA	AMPI	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - • Q - ¥	<u>ں</u>	
DEPTH SCAL (metres)	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp	ADDITIONAL LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE		236.90							
-		ASPHALT: (175mm) SAND, some silt, some gravel, brown.	×××	0.00							
-		moist: (FILL)			1	GS			o		
t											
-1		SAND, some silt, some gravel, trace clay,		235.99 0.91			0.1				
-		dense to loose, brown, moist: (FILL)			2	55	31				
ŀ											
·											
-2	ngers				3	SS	10				
-	em A			234.61							
·	olid St	CLAY , silty, some sand to sandy, trace gravel, firm to stiff, brown, moist		2.29				Grain Size Analysis:			
	ŭ				4	SS	7	Gr 6%/ Sa 24%/ Si 42%/ Cl 28%			
- 3										\mathcal{A}	
ŀ											
					5	SS	14		°		
							-				
4											
'					6	SS	11		0		
·	\vdash	END OF BOREHOLE AT 4.06m.	XX	232.48 4.42		-					
ŀ		BOREHOLE OPEN AND DRY UPON COMPLETION.									
5		BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS,									
ľ		SURFACE.									
ŀ											
-6					$\langle \rangle$						
ŀ							-				
ŀ					/_						
-											
7								2			
ľ											
·					<	V					
ŀ			\backslash								
-8											
ŀ				X							
·			/								
ŀ											
- 9		, v									
ŀ											
ŀ											
t											
		GROUNDWATER ELE	VA'	TIONS	<u>}</u>		<u> </u>				
i l		${\overline{ au}}$ water level upon CO	MPL	ETION		1	Ľν	ATER LEVEL IN WELL/PIEZO	OMETER LOGGED : MA		
									CHECKED : CZ		
											HIGREEN

			F	REC	0	RE) (OF BOREHOLE 2	20-12		
PF		CT : HWY 50 Drainage Impr	roven	nent						Project I	No. 28262
ST	ARTI	ED : March 9, 2020								SHEET	1 OF 1
CC	OMPL	ETED : March 9, 2020					N 4	856 678.3 E 604 043.7		DATUM	Geodetic
ЧГЕ	DOH.	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	RGAL	DIEZOMETED
'H SC/ hetres)	0 MET		A PLO ⁻	ELEV.	BER	H H	s/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT			OR
DEP1	ORIN	DESCRIPTION	IRAT	DEPTH (m)	NUM	Ϊ	LOWS			ADD LAB.	INSTALLATION
		GROUND SURFACE	S	237.40		-	8				<u> </u>
		ASPHALT: (200mm)		0.00							
-		(FILL)		0.20					0		
					1	GS					
· 1		SAND, gravelly, some silt, trace clay,		236.49 0.91	2	ss	14		0		Bentonite
		compact, 210m, moloci (1122)									Domonito
0	gers				3	ss	20				
-2	em Au										
	olid St							Grain Size Analysis:			Filter Sand
	S				4	55	16	Gr 29%/ Sa 49%/ Si & Ci 22%			
3										\nearrow	
					5	ss	15			/	Slotted Screen
-4											
-					6	SS	13				Sand
	\vdash	END OF BOREHOLE AT 4.42m.		232.98 4.42							<u></u>
		Schedule 40 PVC pipe with a 1.52m slotted screen.									
5											
		MATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Mar 09/20 Drv -									
		May 26/20 2.80 234.60									
-6							2				
					\langle						
								7			
7											
					<						
-8											
. 0											
5											
					Ĺ						<u> </u>
)		7				
		WATER LEVEL UPON CC	JMPL	LE FION		-1	v ⊣ N	VATER LEVEL IN WELL/PIEZC lay 26, 2020	DMETER LOGGED : MA CHECKED : CZ	4 <u>7</u>	
									525KED . 02		IHURBE

				F	REC	0	RĽ) (OF BOREHOLE	20-13		
PF	ROJ		T : HWY 50 Drainage Impr	oven	nent						Project I	No. 28262
ST	TAR DMI		M : D : March 10, 2020 TED : March 10, 2020					N 4	856 744.4 E 603 998.8		SHEET DATUM	1 OF 1 Geodetic
	6	a	SOIL PROFILE			SA	AMPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa		
DEPTH SCALE (metres)		BORING METHO	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_			GROUND SURFACE		237.80							
ŀ			SAND, some silt, some gravel, brown,	***	0.20							
·			moist: (FILL)			1	GS			p		
- - 1 -			SAND, silty, some clay, trace gravel, compact, brown, moist: (FILL)		236.89 0.91	2	ss	25		0		
-2	i Augers		CLAY, silty, sandy, trace gravel, stiff to very stiff, brown, moist: (TILL)		236.28 1.52	3	ss	11	Grain Size Analysis: Gr 4%/ Sa 23%/ Si 46%/ Cl 27%	0		
-	Solid Sterr					4	ss	30		0		
- 3 - -						5	ss	27		•		
- -4 -					233.38 4 4 9	6	SS	71		0		
- - - 5 -			BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.									
- - 6												
- - -						\langle						
- 7 - -						~						
- -8 -												
- 9												
-												_
				VA ⁻		5 I	_	Lν				
				. IVII L		•	-	v	,,,,_,,_,,,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CHECKED : CZ		THURBER

				F	REC	O	RE) (OF BOREHOLE 2	20-14		
LO	OJ CA		י דייס טרמוחage impr N :	oven	nent						Project l	No. 28262
ST CC	'Ar Dmi	RTED	0 : March 9, 2020 TED : March 9, 2020				I	N 4	856 800.8 E 603 918.1		SHEET DATUM	1 OF 1 Geodetic
	(0	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa		
DEPTH SCALE (metres)		BORING METHO	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	Initi V - Cpen ▲ rem V - Cpen ▲ 40 80 120 160 1 1 1 WATER CONTENT, PERCENT wp 0 20 30 40 10 20 30 40 10 10 10 10	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
-			GROUND SURFACE		237.90							
			SAND and SILT, trace gravel, brown,	***	0.00							
			moist: (FILL)			1	GS			0		
- 1			CLAY, silty, sandy, trace gravel, very stiff, brown, moist: (TILL)		236.99 0.91	2	SS	19	Grain Size Analysis: Gr 2%/ Sa 26%/ Si 41%/ Cl 31%	0		
-2	Augers					3	SS	27		0		
	Solid Stem		Hard to very stiff			4	SS	34		•		
- 3											7	
						5	SS	36		0		
-4						6	SS	23		0		
			END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION.	XX	233.48 4.42							
- 5			BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.									
-6												
						\leq						
- 7												
						<						
-8												
- 9			~									
	L		GROUNDWATER ELE	VA	TIONS	5	1	1	I			
			$\overline{\mathcal{Y}}$ water level upon co	MPL	ETION	I	Ţ	Lν	VATER LEVEL IN WELL/PIEZO	DMETER LOGGED : MA CHECKED : CZ		

PR LO ST	OJEC CATI ARTE	т : HWY 50 Drainage Impr DN :	oven	nent									_		
ST/	ARTE												Pi	oject N	lo. 28262
CO	MPLI	D : April 7, 2020 ETED : April 7, 2020				Ν	N 4 8	856 888.0 E 603 850.7					SI D/	HEET 1 ATUM	OF 1 Geodetic
щ	ЦОБ	SOIL PROFILE			SAI	MPL	.ES	COMMENTS	S	HEAR S nat V -		H: Cu, KP Q - X	a	ט נ	
DEPTH SCAL (metres)	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	2 W. M. 1	rem V - 10 8 I ATER C 10 2	30 1: DNTENT 0 20 3	Cpen ▲ 20 16 . PERCEN 	0 1T)	ADDITIONAI LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE		238.60											
-		SAND, trace silt and gravel, trace oxide, dense, brown, moist: (FILL)		0.15	1	SS	46		0						
- 1 - 1		CLAY , silty, sandy, trace to some gravel, very stiff to hard, brown, moist: (TILL)		237.53 1.07	2	SS	24		0 C	,				•	
- -2	olid Stem Augers				3	SS	48			0			>>		
-	ŭ				4	SS	63			0			>>	~	
-3				234.94	5	SS	66	Grain Size Analysis: Gr 16%/Sa 21%/Si 40%/Cl 23%		0			>>		
-4 - -		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.		3.66											
- 5									Þ						
-6															
- - 7 -								2							
- - 8															
- 9															
-															
		GROUNDWATER ELE	VA ⁻ MPL	LETIONS	5	Ţ	Z w	ATER LEVEL IN WELL/PIEZO	OMETE	R	LOGGE	D : § ED : (SB CZ		

			F	REC	0	RE) (OF BOREHOLE 2	0-1	6						
PF LC	ROJEC DCATI	CT : HWY 50 Drainage Impr ON :	oven	nent									Ρ	roject I	lo. 28262	
ST	ARTE	D : March 10, 2020 ETED : March 10, 2020				I	N 4	856 940.1 E 603 773.5					S D	HEET ATUM	1 OF 1 Geodetic	
щ	G	SOIL PROFILE			SA	MPL	ES	COMMENTS	S	HEAR S		H: Cu, KF	Pa	, ن		
DEPTH SCAL (metres)	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	N N	rem V - 40 { /ATER C/ vp I	80 1: DNTENT 0 20 3	Cpen ▲ 20 16 	50 NT 11 0	ADDITIONAL LAB. TESTIN	PIEZOME OR STANDPI INSTALLA	TER IPE TION
				239.70												
		SAND, some silt, some gravel, brown, moist: (FILL)		0.20	1	GS			0							
- 1		SAND, silty, some clay, trace gravel, compact, brown, moist: (FILL)		238.79 0.91	2	ss	13			0					Bentonite	
	ø	CLAY, silty, some sand to sandy, trace to some gravel, hard, brown, moist: (TILL)		238.25 1.45			20	Grain Size Analysis:				$\sum_{i=1}^{n}$				
-2	I Stem Auger					33	30	Gi 376 34 2176 314076 Ci 2076							Filter Sand	
- 3	Solid				4	SS	47			0				7	-	
					5	SS	42			0					Screen	
-4		Very Stiff			6	SS	20			0					Sand	
		END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen.		235.28 4.42											Į	
- 5		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Mar 10/20 Dry -							2							
-6		May 26/20 3.10 236.60														
					\langle											
- 7 - 7								2								
				X												
- 9																
EL-28202.GF																
- 07	_	GROUNDWATER ELE	VA	TIONS	3	_	_		_			_	_	_		
HUKDER		$\stackrel{\bigvee}{=}$ water level upon CO	DMPL	ETION		Ţ	ч м	/ATER LEVEL IN WELL/PIEZC ay 26, 2020	METE	R	LOGGE	D : I ED : (MA CZ		тни	JRBER

PR		T · HWY 50 Drainage Impr	F oven	REC	O	RE) (DF BOREHOLE 2	20-17	Project	No. 28262
LO ST	CATIO	DN : D : March 10, 2020	oven							SHEET	1 OF 1
CC	OMPLE	TED : March 10, 2020				1	N 4	857 011.7 E 603 723.6		DATUM	Geodetic
DEPTH SCALE (metres)	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	JADF TYPE	BLOWS/0.3m	COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	SHEAR STRENGTH. CU, KPa nat V - ● Q - ★ rem V - ● Cpen ▲ 40 80 120 1 1 1 WATER CONTENT, PERCENT wp - wp - 0 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_				240.90							
-		SAND, some silt, some gravel, brown, moist: (FILL)		0.20	1	GS			0		
- - 1 -		CLAY, silty, some sand, trace to some gravel, stiff to very stiff, brown, moist: (TILL)		239.99 0.91	2	ss	13		0		
-2	em Augers				3	SS	26	Grain Size Analysis: Gr 1%/ Sa 17%/ Si 47%/ Cl 35%	01		
- - - 3	Solid St	Hard			4	SS	45		0	Þ	
-					5	SS	47		0		
-4				236.48	6	SS	34		0		
- - 5 -		END OF DORENOLE AT 4.4211. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.		4.92							
- - -6 -											
- 7								2			
-8 -											
- 9											
					Ĺ						
		GROUNDWATER ELE \overline{Y} water level upon co	VA MPL	ETIONS		1	<u>v</u>	ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : MA CHECKED : CZ		

DEPHH SCALE DEPHH SCALE (metres) 1		T : HWY 50 Drainage Impro DN : D : March 9, 2020	oven	nent						Project N	Vo 28262
DEPTH SCALE (metres)	NRTE MPLE	D : March 9, 2020									
L DEPTH SCALE (metres)	Q	TED . Watch 9, 2020				١	۷48	357 054.5 E 603 656.9		SHEET DATUM	1 OF 1 Geodetic
L DEPTH SCAL (metres)	0	SOIL PROFILE			SA	MPL	.ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - X	. ()	
1	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 ↓ ↓ WATER CONTENT, PERCENT wp ↓ ─ ─ ₩ ↓ 10 20 30 40	ADDITIONAL LAB. TESTINO	PIEZOMETER OR STANDPIPE INSTALLATION
1	+	GROUND SURFACE ASPHALT: (200mm)		241.60 0.00							
1		SAND, some silt, trace gravel, brown,		0.20							
1					1	GS			0		
		CLAY, silty, trace sand and gravel, very		240.69 0.91	2	SS	18				
		Sun to hard, brown, moist. (HEE)									
Quere	gers				3	SS	25	Grain Size Analysis: Gr 4%/ Sa 10%/ Si 49%/ Cl 37%			
.2	Stem Au										
	Solid				4	SS	45		0	~	
3											
					5	SS	44		°		
·4					6	SS	31		0		
	_	END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON		237.18 4.42							
5		COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO									
		SURFACE.									
_											
.0											
					\langle			~			
7								/			
					4						
·8											
9											
-											
			VAT	FIONS	3	_	,				
		⊥ WATER LEVEL UPON CO	MPL	ETION		<u> </u>	- w	ATER LEVEL IN WELL/PIEZC	METER LOGGED : MA CHECKED : CZ		

			F	REC	0	RD) (OF BOREHOLE 2	20-1	9						
LC	CAT	ION :	proven	noill									Р	roject N	NO. 20202	
ST CC	TART	ED : April 7, 2020				١	N 4	857 127.1 E 603 605.7					S D	HEET ATUM	1 OF 1 Geodetic	
	B	SOIL PROFILE			SA	MPL	.ES	COMMENTS	5	HEAR S		TH: Cu, KP Q - 🗙	a	(7)		
DEPTH SCALE (metres)	BORING METHO	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100		rem V - 40 /ATER C wp		Cpen ▲ 120 16 1 1 7, PERCEN 30 40 1 1	0 VT I)	ADDITIONAL LAB. TESTING	PIEZOM OR STANDI INSTALL	ETER PIPE ATION
	$\left \right $	GROUND SURFACE ASPHALT: (150mm)		242.40 0.00												
-	ngers	SAND, gravelly, trace silt, very dense, brown, dry: (FILL)		241.64	1	SS	52	Grain Size Analysis: Gr 20%/ Sa 72%/ Si & Cl 8%	0							
- 1	Solid Stem A	CLAY, silty, some sand to sandy, trace gravel, very stiff, brown, moist: (TILL)		0.76	2	ss	29			0			•		Bentonite	
- - -2					3	ss	47	Grain Size Analysis: Gr 8%/ Sa 25%/ Si 45%/ Cl 22%		0			>>		Ter Sand	
- - - 3					4	ss	87			0			~	2	Slotted	
		END OF BOREHOLE AT 3.66m.		238.74 3.66	5	ss	72			0			>>,		Corosin	
-4		WATER LEVEL READINGS:	d													
- 5 -		DATE DEPTH(m) ELEV.(m) Apr 07/20 Dry - May 26/20 2.10 240.30							>)/							
- 6 -																
- - 7 -																
-8																
- - 9 -																
					Ĺ											
		GROUNDWATER EL $\overline{\mathbb{Y}}$ water level upon (EVA COMPL		1	Ţ	<u>к</u> м	'ATER LEVEL IN WELL/PIEZC ay 26, 2020	OMETE	R	LOGGE CHECK	:D : S :ED : C	SB CZ		ТН	URBE

			F	REC	O	RD) (OF BOREHOLE	20-20		
LO		יי די די סט דער מאר די סט טרמוהage impr DN :	overn	ICIIL						Project	No. 28262
ST. CC	ARTE	D : March 5, 2020 TED : March 5, 2020				I	N 4	857 184.7 E 603 516.6		SHEET DATUN	1 OF 1 I Geodetic
щ	OD	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - X	, U	
DEPTH SCAL (metres)	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	rem V - ● Cpen ▲ 40 80 120 160 H H H WATER CONTENT, PERCENT wp → O ^W H wl 10 20 30 40 H H	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_				243.00							
-		SAND some silt trace gravel brown	****	0.00							
-		moist: (FILL)		0.20	1	GS			0		
- 1		Loose			2	SS	9		0		
-		CLAY, silty, trace sand and gravel, firm, grey, moist: (FILL)		241.63 1.37							
-2	n Augers				3	ss	6				Filter Sand
- - -	Solid Ster	CLAY, silty, some sand to sandy, trace gravel, very stiff to hard, grey, wet: (TILL)		240.71 <u></u> 2.29	4	ss	16		0		
- 3					5	ss	31	Grain Size Analysis: Gr 5%/ Sa 24%/ Si 45%/ Cl 26%			
- 4					6	SS	28				Sand
		END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen.	<u>XXX</u>	238.58 4.42							[<u>····</u>
- 5 - -		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Mar 05/20 3.73 239.27 May 26/20 1.10 241.90									
-6 -) .					
- -					\langle			~/ ?			
- /											
8											
-											
- 9											
					Ĺ						
			VAT	IONS	5		,				
		🐣 WATER LEVEL UPON CO	MPL	ETION		7	K ⊔ M	/ATER LEVEL IN WELL/PIEZ(ay 26, 2020	OMETER LOGGED : AF CHECKED : CZ		THURBE

				REC	0	RD	\mathbf{O}	OF BOREHOLE 2	0-21		
PF	ROJEC	CT : HWY 50 Drainage Impi	rover	ment						Project I	No. 28262
ST	ARTE	D : March 4, 2020								SHEET	1 OF 1
CC		ETED : March 4, 2020				1	N 4	857 262.5 E 603 469.9		DATUM	Geodetic
Щ	Ę	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - X rem V - Cpen	μĻ	
EPTH SCA (metres)	RING METI	DESCRIPTION	ΧΑΤΑ ΡLOT	ELEV. DEPTH	JUMBER	ТҮРЕ	OWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160 4 WATER CONTENT, PERCENT WD	ADDITIONA ABD. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
	ß		STF	(m)	2		BL	20 40 60 80 100	10 20 30 40		
		GROUND SURFACE ASPHALT: (175mm)		243.70 0.00							
		SAND, some silt, some gravel, brown, moist; (FILL)		0.18							
				8	1	GS			0		
ŀ											
- 1		Dense to compact			2	ss	33		0		
Ĩ	ers			×.	3	ss	16	Grain Size Analysis: Gr 20%/Sa 68%/ Si & Cl 12%	0		
-2	u Aug			241.57							
-	I Sten	CLAY, silty, some sand, trace gravel, very stiff, grey, moist: (TILL)		2.13							
-	Solic				4	ss	24		0		
-										\sim	
- 3											
					5	SS	26		• ·		
-											
-4					6	SS	26		0		
-				239.28							
-		BOREHOLE OPEN AND DRY UPON COMPLETION.									
- 5		BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS,									
		SURFACE.									
-											
-				$\langle -$							
-6			\times								
-											
-					$\langle \langle \rangle$						
-						\setminus		~			
- 7							\geq				
-				\backslash							
-						ĺ					
-											
-8											
-											
-											
- -											
- 9											
ŀ											
ŀ											
 		GROUNDWATER ELE	VA	TIONS	ــــــ ک	I	I				
		$\overline{ abla}$ water level upon CC	OMP	LETION		Ţ	Z w	ATER LEVEL IN WELL/PIEZO			
								· ·	CHECKED : CZ		

			F	REC	0	RE) (OF BOREHOLE 2	20-23		
PF	ROJE	CT : HWY 50 Drainage Impr	over	nent						Project	No. 28262
ST	TARTI	ED : March 4, 2020								SHEET	1 OF 1
C	OMPL	ETED : March 4, 2020					N 4	857 397.9 E 603 330.7			1 Geodetic
) ALE	ТНОБ	SOIL PROFILE	F	r –	SA	AMPL	ES	COMMENTS	nat V - ♥ Q - ¥ rem V - ♥ Cpen ▲	ING	PIEZOMETER
TH SC netres	IG ME	DESCRIPTION	A PLO	ELEV.	I BER	ШЩ	S/0.3n	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160		OR
DEP	BORIN	BEOORI HON	STRAT	DEPTH (m)	NUN	È	BLOW	20 40 60 80 100	wp H 0 W wl 10 20 30 40	ADI	INSTALLATION
_		GROUND SURFACE	0)	245.30							
		SAND, some silt, some gravel, brown,	**	0.00							
Ì		moist: (FILL)			1	GS			0		
-											
- 1		Loose			2	ss	7		0		
-				243.78		-					
ŀ		CLAY , silty, some sand, trace gravel, firm to very stiff, grey, moist: (TILL)		1.52				Grain Size Analysis:			
-2	Augers				3	SS	7	Gr 0%/ Sa 14%/ Si 44%/ Cl 42%		-	
ŀ	Stem /										
Į.	Solid				4	ss	21				
•										\searrow	
- 3						-					
ŀ					5	SS	21		0		
Ţ											
-4					6	SS	18				
Ì				240.88							
-		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION.		4.42							
- 5		BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLIDEATCH TO									
		SURFACE.									
Ì						\land					
-					\land						
-6		/									
-					/_						
ł											
- 7							\searrow	7			
ł				\backslash							
-					<	1					
F°			\mathbb{Z}	/							
ŀ											
_											
9/9/2											
2.GPJ											
L-2826											
2S TE	•	GROUNDWATER ELE	VA	TIONS	5						
RBER		abla water level upon CC	MPL	LETION	I	7	Ľγ	ATER LEVEL IN WELL/PIEZO	OMETER LOGGED : AF		
Ĩ									CHECKED : CZ		THURBER

HUDEL M. 11 TO DOUBLE PROFILE TO DOUBLE PROFILE TO DOUBLE PROFILE TO TO DOUBLE PRO				F	REC	O	RD) (OF BOREHOLE 2	20-2	5					
STATE D: :: March 4, 2020 TOTAL 6,202 TOTAL 6,203 TOTAL 6,203 000000000000000000000000000000000000	LC	CAT	ION : HWY 50 Drainage Impr	oven	hent									Pi	roject N	lo. 28262
BIT SOLL PROFILE MARKES COMMENTS Description Office Product Constraints Product Constrante	ST CC	art DMPL	ED : March 4, 2020 ETED : March 4, 2020				1	N 4	857 530.1 E 603 184.3					SI D	HEET 1 ATUM	1 OF 1 Geodetic
	ш	8	SOIL PROFILE			SA	MPL	ES	COMMENTS	S	HEAR S nat V -		FH: Cu, KF Q - 🗙	'a	. (1)	
	DEPTH SCAL (metres)	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	- · ·	rem V - 40 ATER C vp I	• 1 0NTENT 	Cpen ▲ 120 16 1 1 7, PERCEN w 30 40	0 NT I D	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
1 Image: State in the server with the server, here 0 image: State in the server with the server, here 0 image: State in the server with the server, here 0 image: State in the server with the server, here 1 Image: State in the server with the server, here 0 image: State in the server with the server, here 0 image: State in the server with the server withe server with the server with the server with the server with th	-		GROUND SURFACE		246.70											
1 Image: CPUID with states and to write the field of write the states of the stat			SAND, some silt, some gravel, brown,		0.00											
1 Image: Strate werden werden in burger in human werden in burger in burger werden in burg			moist: (FILL)			1	GS			0						
1 Image: Live and L					245 70											
2 yei ye	1		CLAY, silty, some sand to sandy, trace gravel very stiff brown moist: (TILL)		0.91	2	SS	17	Grain Size Analysis: Gr 3%/ Sa 26%/ Si 45%/ Cl 26%		0					
-2 or or or or -3 or or or or -4 or or or or -4 or or or or or -4 or or or or or or -4 or or or or or or or -4 or or or or or or or or -4 or			gravel, very still, brown, moist. (The													
2 und with the second																
-2 0		sis				3	SS	24			0 /		\rightarrow			
3 4 4 85 4 95	-2	Auge														
-3 + + + + + + + + + + + + + + + + + + +		Ster									\wedge					
3 Image: Strate St		Solid				4	ss	34			0			>>		
-4 SHT 5 SS 31 0 0 ~ -5 EXEMPTION ENCIPTION BOOM AND DRY UPON BOOM DO ENCIPLIC AT 4400 BOOM DO ENCIPLIC AND OUTINGS UNIFAGE. - - - - -5 FOR UPON THE OCCUPUE AND OUTINGS UNIFAGE. - - - - - -6 FOR UPON THE OCCUPUE AND OUTINGS UNIFAGE. - - - - - - -7 FOR UNIT HOLD ENCOMPLIANT IN TO UNIT HOLD ENCOMPLIANT IN THE OLD ENCOMPLIANT IN TO UNIT HOLD ENCOMPLIANT IN THE OLIVER IN										\sum_{i}					\sim	
4 sir si	3									\sim						
4 SIT SIT SIT SIT SIT SIT 5 HOOF DEPENDENCE AT 4 40% SIT SIT SIT SIT 5 HOOF DEPENDENCE AT 4 40% SIT SIT SIT SIT 6 HOOF DEPENDENCE AT 4 40% SIT SIT SIT SIT 6 HOOF DEPENDENCE AT 4 40% SIT SIT SIT SIT 6 HOOF DEPENDENCE AT 4 40% 6 HOOF DEPENDENCE AT 4 40% 7 HOOF DEPENDENCE AT 4 40% 8 HOOF DEPENDENCE AT 4 40% 9 HOOF DEPENDENCE AT 4 40% 9 HOOF DEPENDENCE AT 4 40% 9 HOOF DEPENDENCE AT 4 40% HOOF DEPENDENCE AT 4 40						5	SS	31			0			>>		
-4 SW 0 SS 12 -5 -6 -0 -0 -6 -0 -0 -0 -6 -0 -0 -0 -7 -0 -0 -0 -8 -0 -0 -0 -9 -0 -0 -0 -7 -0 -0 -0 -8 -0 -0 -0 -9 -0 -0 -0 -7 -0 -0 -0 -8 -0 -0 -0 -9 -0 -0 -0 -9 -0 -0 -0 -9 -0 -0 -0 -10 -0 -0 -0 -2 -0 -0 -0 -2 -0 -0 -0 -0 -10 -0 -0 -0 -0 -2 -0 -0 -0 -0 -2 -0 -0 -0 -0 -2 -0 -0 <td></td>																
Suff Suff	-4									$\langle \rangle$						
END OF BOREHOLE AT 4.42m 44 FOR DEPENDER AND DAY UPON DOMENCE RANCELED WITH BENTOMIT HOLE PLUG AND CUTTINGS URF AGE 44 -5 TO METHODE RANCE -6 -7 -7 -8 -8 -9 -9 -0 CROUNDWATER ELEVATIONS Variant Elevel UPON COMPLETION Variant Elevel UPON COMPLETION Variant Elevel UPON COMPLETION Variant Elevel UPON COMPLETION	-		Stiff			6	SS	12			°					
-5 BOREHOLE NAM DRY VPON DEPINIONIE TOUEPALED WITH BERNOME HOLE AND CUTTINGS SURFACE. -6 -6 -7 -7 -8 -7 -8 -7 -9 -7 -8 -7 -9 -7 -8 -7 -8 -7 -8 -7 -9 -7 -9 -7 -9 -7 -8 -7 -9 -7 -8 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9 -7 -9		\vdash	END OF BOREHOLE AT 4.42m.		242.28 4.42											
-5 BENTONIE HOZERUGAND CUTTINGS. -6 SURFACE. -6 SURFACE. -7 SURFACE. -8 SURFACE. -9 SURFACE. -9 SURFACE. WATER LEVEL UPON COMPLETION ¥ WATER LEVEL IN WELL/PIEZOMETER COGED : AF OHECKED : CZ			BOREHOLE OPEN AND DRY UPON COMPLETION.								1					
GROUNDWATER ELEVATIONS Vater Level UPON COMPLETION Vater Level UPON COMPLETION Vater Level IN Well/Plezometer CHECKED : CZ	5		BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO							\nearrow						
-6 -6 -7 -7 -8 -9 -9 -0 SROUNDWATER ELEVATIONS Y WATER LEVEL UPON COMPLETION Y WATER LEVEL UPON COMPLETION Y WATER LEVEL UPON COMPLETION			SURFACE.													
GROUNDWATER ELEVATIONS S water level upon completion V water level in well/piezometer Logged : AF CHECKED : CZ																
6 Image: Second state of the second sta						$\mathbf{\lambda}$										
7 Image: Second Se	-6			\times												
7 Image: Second state of the second sta							1									
7 Image: Second state of the second sta						$\left(< \right)$										
-7 Image: Second state st							\backslash		\wedge							
-8 9 9 GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF CHECKED : CZ	7							/								
-8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9																
-8 -9 GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF CHECKED : CZ																
-3 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	0															
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER CHECKED : CZ	-0															
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER HOGGED : AF CHECKED : CZ																
9 GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER CHECKED : CZ																
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF CHECKED : CZ THUR	9		· ·													
GROUNDWATER ELEVATIONS																
GROUNDWATER ELEVATIONS																
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF CHECKED : CZ THUR																
✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF Image: CHECKED : CZ THUR	_	_		VAT	FIONS	3	_	-			_	_		_	_	
CHECKED : CZ THUR			eq water level upon CO	MPL	ETION		7	۷ ک	VATER LEVEL IN WELL/PIEZO	OMETE	R	LOGGE	D : /	٩F		
												CHECK	ED : (CZ		THURBER

Appendix D

Single Well Response Test Analyses

Appendix E

Infiltration Testing Results

Calculation formulas related to shape factor (C). Where H_1 is the first water head height (cm), H_2 is the second water head height (cm), α is borehole radius (cm) and α^* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only C_1 needs to be calculated while for two-head method, C_1 and C_2 are calculated (Zang et al., 1998).

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{1/a}}{2.102 + 0.118(H_{1/a})}\right)^{0.655}$ $C_{2} = \left(\frac{H_{2/a}}{2.102 + 0.118(H_{2/a})}\right)^{0.655}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_{1} = \left(\frac{H_{1/a}}{1.992 + 0.091(H_{1/a})}\right)^{0.683}$ $C_{2} = \left(\frac{H_{2/a}}{1.992 + 0.091(H_{2/a})}\right)^{0.683}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_{1} = \left(\frac{\frac{H_{1/a}}{2.074 + 0.093(\frac{H_{1/a}}{a})}\right)^{0.754}$ $C_{2} = \left(\frac{\frac{H_{2/a}}{2.074 + 0.093(\frac{H_{2/a}}{a})}\right)^{0.754}$

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{fs} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm), H_2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$ $C_r \times Q_r$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{c_1 \wedge q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}C_{1}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\phi_m = G_3Q_1 - G_4Q_2$

Saturated Hydraulic Copnductivity Calculations

Project:	Highway 50 Stormwater Sewer	Test Date:	2020-05-27
Number:	28262	Client:	Region of Peel
Performed by:	LP	Checked by:	AH
Test ID:	Test Pit 20-02	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.56	Test Elevation (masl):	-
Soil Description:	Sand and Gravel, grey, moist (Fill)		

Saturated Hydraulic Copnductivity Calculations

Project:	Highway 50 Stormwater Sewer	Test Date:	2020-05-27
Number:	28262	Client:	Region of Peel
Performed by:	LP	Checked by:	AH
Test ID:	Test Pit 20-06	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.48	Test Elevation (masl):	-
Soil Description:	Sand, trace silt, some gravel, very dense, grey, dry (Fill)		

Project:	Highway 50 Stormwater Sewer	Test Date:	2020-05-27
Number:	28262	Client:	Region of Peel
Performed by:	LP	Checked by:	AH
Test ID:	Test Pit 20-08	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.41	Test Elevation (masl):	-
Soil Description:	Sand, some silt, some gravel, brown, moist (Fill)		

Project:	Highway 50 Stormwater Sewer	Test Date:	2020-05-27
Number:	28262	Client:	Region of Peel
Performed by:	LP	Checked by:	AH
Test ID:	Test Pit 20-12	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.48	Test Elevation (masl):	-
Soil Description:	Sand, some silt and gravel, brown, moist (Fill)		

Project:	Highway 50 Stormwater Sewer	Test Date:	2020-05-27
Number:	28262	Client:	Region of Peel
Performed by:	LP	Checked by:	AH
Test ID:	Test Pit 20-14	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.37	Test Elevation (masl):	-
Soil Description:	Sand and Silt, some clay, brown, moist (Fill)		

Project:	Highway 50 Stormwater Sewer	Test Date:	2020-05-27
Number:	28262	Client:	Region of Peel
Performed by:	LP	Checked by:	AH
Test ID:	Test Pit 20-18	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.54	Test Elevation (masl):	-
Soil Description:	Sand, some silt and clay, trace gravel, brown, moist (Fill)		

Project:	Highway 50 Stormwater Sewer	Test Date:	2020-05-27
Number:	28262	Client:	Region of Peel
Performed by:	LP	Checked by:	AH
Test ID:	Test Pit 20-20	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.46	Test Elevation (masl):	-
Soil Description:	Sand, some silt, trace gravel, brown, moist (Fill)		

Project:	Highway 50 Stormwater Sewer	Test Date:	2020-05-27
Number:	28262	Client:	Region of Peel
Performed by:	LP	Checked by:	AH
Test ID:	Test Pit 20-22	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.33	Test Elevation (masl):	-
Soil Description:	Sand, some silt, some gravel, brown, moist (Fill)		

Project:	Highway 50 Stormwater Sewer	Test Date:	2020-05-27
Number:	28262	Client:	Region of Peel
Performed by:	LP	Checked by:	AH
Test ID:	Test Pit 20-24	Soil Sample ID:	-
Test Pit Easting (m):	-	Test Pit Northing (m):	-
Test Depth (mbgs):	0.3	Test Elevation (masl):	-
Soil Description:	Sand, some silt, some gravel, brown, moist (Fill)		

Appendix F

Laboratory Certificates of Analysis

CA14682-AUG20 R1

28262

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Thurber Engineering Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Alireza Hejazi	Telephone	705-652-2143
Telephone	416-992-9723	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	ahejazi@thurber.ca	SGS Reference	CA14682-AUG20
Project	28262	Received	08/24/2020
Order Number		Approved	08/31/2020
Samples	Ground Water (4)	Report Number	CA14682-AUG20 R1
		Date Reported	08/31/2020
COMMENTS			
RL - SGS Reporting	Limit		
I emperature of Sam	nple upon Receipt: 12 degrees C		
Cooling Agent Prese	ent:No		
Custody Seal Prese	ent:No		
Chain of Custody Nu	umber:01670		
RL increased for tkn	due to sample matrix interference		
SIGNATORIES			
	Brad Mo	ore Hon. B.Sc	

TABLE OF CONTENTS

First Page	
Index	2
Results	
Exceedance Summary	
QC Summary	
Legend	
Annexes	

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

PACKAGE: SANSEW - General Chemi	i stry (WATER)		Sa	mple Number	8	9	10	11
			8	Sample Name	20-24	20-20	20-16	20-08
1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer D	Discharge - BL_53_2010		ຣ	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Dis	scharge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
General Chemistry								
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4 ↑	< 4↑	< 4↑	< 4↑
Total Suspended Solids	mg/L	2	350	15	142	296	569	135
Total Kjeldahl Nitrogen	as N mg/L	1.0	100	1	< 1.5↑	< 1.0	1.3	< 0.5↓
PACKAGE: SANSEW - Metals and Inor	rganics		Sa	mple Number	8	9	10	11
(WATER)			s	Sample Name	20-24	20-20	20-16	20-08
1 - SANSEW / WATER / Real Table 1 - Sanitary Sawer F	Discharge - BL 53 2010		s	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Dis	scharge - BL 53 2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Metals and Inorganics								
Fluoride	mg/L	0.06	10		0.15	0.16	0.14	0.14
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01	0.01	< 0.01	< 0.01
Sulphate	mg/L	2	1500		130	92	62	73
Aluminum (total)	mg/L	0.001	50		0.127	3.41	4.52	0.472
Antimony (total)	mg/L	0.0009	5		0.0014	< 0.0009	< 0.0009	< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0011	0.0038	0.0033	0.0010
Cadmium (total)	mg/L	0.00000	0.7	0.008	0.000040	0.000062	0.000118	0.000052
		3						
Chromium (total)	mg/L	0.00008	5	0.08	0.00274	0.00640	0.00883	0.00293
Copper (total)	mg/L	0.0002	3	0.05	0.0012	0.0119	0.0132	0.0020
Cobalt (total)	mg/L	0.00000	5		0.00585	0.00277	0.00887	0.00184
Lead (total)	mg/L	0.00001	3	0.12	0.00073	0.0117	0.00587	0.00095

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

PACKAGE: SANSEW - Metals and	Inorganics		Sa	ample Number	8	9	10	11
(WATER)				-				
			;	Sample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Se	ewer Discharge - BL_53_2010		:	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sever	er Discharge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Metals and Inorganics (continued)								
Manganese (total)	mg/L	0.00001	5	0.05	1.55	3.22	1.69	0.501
Molybdenum (total)	mg/L	0.00004	5		0.00161	0.00118	0.00107	0.00086
Nickel (total)	mg/L	0.0001	3	0.08	0.0090	0.0070	0.0116	0.0052
Phosphorus (total)	mg/L	0.003	10	0.4	< 0.003	0.230	0.130	0.021
Selenium (total)	mg/L	0.00004	1	0.02	0.00014	0.00009	0.00012	0.00077
Silver (total)	mg/L	0.00005	5	0.12	0.00006	< 0.00005	0.00006	< 0.00005
Tin (total)	mg/L	0.00006	5		0.00176	0.00149	0.00169	0.00204
Titanium (total)	mg/L	0.00005	5		0.00326	0.0827	0.0376	0.0108
Zinc (total)	mg/L	0.002	3	0.04	0.007	0.021	0.025	0.008

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

PACKAGE: SANSEW - Microbiology (W	/ATER)		Sam	ple Number	8	9	10	11
	,		Sa	ample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Dis	ischarge - BL_53_2010		Sa	mple Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discl	charge - BL_53_2010		s	Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Microbiology								
E. Coli	cfu/100mL	-		200	<2↑	< 2↑	<2↑	< 2↑
			0				10	
PACKAGE: SANSEW - Nonylphenol and	d Ethoxylates		Sam	ipie Number	8	9	10	11
(WATER)								
			Sa	ample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Dis	ischarge - BL_53_2010		Sa	mple Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	charge - BL_53_2010		S	Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	12	Result	Result	Result	Result
Nonylphenol and Ethoxylates								
Nonylphenol	mg/L	0.001	0.02		< 0.001	< 0.001	< 0.001	< 0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01	< 0.01	< 0.01	< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01	< 0.01	< 0.01	< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01	< 0.01	< 0.01	< 0.01
			_					
PACKAGE: SANSEW - Oil and Grease	(WATER)		Sam	ple Number	8	9	10	11
			Sa	ample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Dis	ischarge - BL_53_2010		Sa	mple Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	charge - BL_53_2010		S	Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Oil and Grease								
Oil & Grease (total)	mg/L	2			< 2	< 2	< 2	< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4	< 4	< 4	< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4	< 4	< 4	< 4

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

PACKAGE: SANSEW - Other (ORP) (WATE	ER)		Si	ample Number	8	9	10	11
				Sample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharg	ge - BL_53_2010			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge	- BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Other (ORP)								
рН	No unit	0.05	10	9	6.89	6.98	7.03	6.96
Mercury (total)	mg/L	0.00001	0.01	0.0004	< 0.00001	< 0.00001	0.00001	< 0.00001
							10	
PACKAGE: SANSEW - PCBs (WATER)			5	ample Number	8	9	10	11
				Sample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharg	ge - BL_53_2010			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge	- BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
PCBs								
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001	< 0.0001	< 0.0001	< 0.0001
PACKAGE: SANSEW - Phenols (WATER)			Si	ample Number	8	9	10	11
				Sample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharg	ge - BL_53_2010			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge	- BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Phenols								
4AAP-Phenolics	mg/L	0.002	1	0.008	0.006	0.006	0.004	0.008
PACKAGE: SANSEW - SVOCs (WATER)			Si	ample Number	8	9	10	11
				Sample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharg	ge - BL_53_2010			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge	- BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

PACKAGE: SANSEW - SVOCs (WATER	र)		Sa	mple Number	8	9	10	11	
			8	Sample Name	20-24	20-20	20-16	20-08	
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Dis	scharge - BL_53_2010		5	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disch	harge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020	
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	
SVOCs									
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002	< 0.002	< 0.002	< 0.002	
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002	< 0.002	< 0.002	< 0.002	
PACKAGE: SANSEW - VOCs (WATER)	1		Sa	mple Number	8	9	10	11	
			5	Sample Name	20-24	20-20	20-16	20-08	
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Dis	scharge - BL_53_2010		5	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disch	ANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020	
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	
VOCs									
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
cis-1,2-Dichloroethene	mg/L	0.0005	4	0.0056	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Methyl ethyl ketone	mg/L	0.02	8		< 0.02	< 0.02	< 0.02	< 0.02	
Styrene	mg/L	0.0005	0.2		< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Trichloroethylene	mg/L	0.0005	0.4	0.008	< 0.0005	< 0.0005	< 0.0005	< 0.0005	

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

Samplers: Liviu Parpalea

PACKAGE: SANSEW - VOCs - BT	TEX (WATER)		Sar	mple Number	8	9	10	11
			s	ample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary S	Sewer Discharge - BL_53_2010		s	ample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Se	ewer Discharge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
VOCs - BTEX								
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005	< 0.0005	< 0.0005	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005	< 0.0005	< 0.0005	< 0.0005
o-xylene	mg/L	0.0005			< 0.0005	< 0.0005	< 0.0005	< 0.0005

X

EXCEEDANCE SUMMARY

					SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010	SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_53_2010
Parameter		Method	Units	Result	L1	L2
20-24						
Total Suspended Sol	lids	SM 2540D	mg/L	142		15
Manganese		SM 3030/EPA 200.8	mg/L	1.55		0.05
Total Kjeldahl Nitroge	en	SM 4500-N C/4500-NO3- F	mg/L	< 1.5		1
20-20						
Total Suspended Sol	lids	SM 2540D	mg/L	296		15
Manganese		SM 3030/EPA 200.8	mg/L	3.22		0.05
20-16		•				
Total Suspended Sol	lids	SM 2540D	mg/L	569	350	15
Manganese		SM 3030/EPA 200.8	mg/L	1.69		0.05
Total Kjeldahl Nitroge	en	SM 4500-N C/4500-NO3- F	mg/L	1.3		1
20-08			~			
Total Suspended Sol	lids	SM 2540D	mg/L	135		15
Manganese		SM 3030/EPA 200.8	mg/L	0.501		0.05

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplica	ite	LC	CS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD A		Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Sulphate	DIO5083-AUG20	mg/L	2	<2	5	20	97	80	120	125	75	125
Biochemical Oxygen Demand												
Method: SM 5210 Internal ref.: ME-CA-IE	NVIEWL-LAK-AN-007											

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0045-AUG20	mg/L	2	< 2	11	30	99	70	130	111	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Becovery	(%	6)	Recovery	(%)	
						(70)	(%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0238-AUG20	mg/L	0.01	<0.01	ND	10	96	90	110	95	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duplic	ate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recovery Limits (%)	
						(76)	(%)	Low	High	(%)	Low	High
Fluoride	EWL0350-AUG20	mg/L	0.06	<0.06	ND	10	104	90	110	110	75	125
Mercury by CVAAS												
Method: EPA 7471A/SM 3112B Internal re	ef.: ME-CA-IENVISPE-	LAK-AN-004										

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0024-AUG20	mg/L	0.00001	< 0.00001	15	20	102	80	120	104	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplic	ate	LC	S/Spike Blank		Ма	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover	/ Limits)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0163-AUG20	mg/L	0.00005	<0.00005	1	20	102	90	110	93	70	130
Aluminum (total)	EMS0163-AUG20	mg/L	0.001	<0.001	2	20	93	90	110	97	70	130
Arsenic (total)	EMS0163-AUG20	mg/L	0.0002	<0.0002	2	20	102	90	110	104	70	130
Cadmium (total)	EMS0163-AUG20	mg/L	0.000003	<0.00003	3	20	101	90	110	102	70	130
Cobalt (total)	EMS0163-AUG20	mg/L	0.000004	<0.00004	2	20	100	90	110	98	70	130
Chromium (total)	EMS0163-AUG20	mg/L	0.00008	<0.0008	2	20	99	90	110	86	70	130
Copper (total)	EMS0163-AUG20	mg/L	0.0002	<0.0002	0	20	100	90	110	99	70	130
Manganese (total)	EMS0163-AUG20	mg/L	0.00001	<0.00001	1	20	101	90	110	98	70	130
Molybdenum (total)	EMS0163-AUG20	mg/L	0.00004	<0.00004	2	20	102	90	110	103	70	130
Nickel (total)	EMS0163-AUG20	mg/L	0.0001	<0.0001	4	20	101	90	110	101	70	130
Lead (total)	EMS0163-AUG20	mg/L	0.00001	<0.00001	4	20	95	90	110	95	70	130
Phosphorus (total)	EMS0163-AUG20	mg/L	0.003	< 0.003	2	20	100	90	110	NV	70	130
Antimony (total)	EMS0163-AUG20	mg/L	0.0009	<0.0009	10	20	102	90	110	112	70	130
Selenium (total)	EMS0163-AUG20	mg/L	0.00004	<0.00004	7	20	96	90	110	98	70	130
Tin (total)	EMS0163-AUG20	mg/L	0.00006	<0.00006	9	20	97	90	110	NV	70	130
Titanium (total)	EMS0163-AUG20	mg/L	0.00005	<0.00005	15	20	98	90	110	NV	70	130
Zinc (total)	EMS0163-AUG20	mg/L	0.002	<0.002	2	20	101	90	110	101	70	130
Silver (total)	EMS0174-AUG20	mg/L	0.00005	<0.00005	ND	20	98	90	110	95	70	130
Aluminum (total)	EMS0174-AUG20	mg/L	0.001	<0.001	4	20	98	90	110	107	70	130
Arsenic (total)	EMS0174-AUG20	mg/L	0.0002	<0.0002	17	20	98	90	110	100	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Metals in aqueous samples - ICP-MS	(continued)											
Method: SM 3030/EPA 200.8 Interr	nal ref.: ME-CA-[ENV]SPE-LAK	-AN-006										
Parameter	QC batch	Units	RL	Method	Dupl	cate	LCS	S/Spike Blank		м	atrix Spike / Ref	E.
	Reference			Blank	RPD	AC (%)	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover (9	ry Limits %)
						(76)	(%)	Low	High	(%)	Low	High
Cadmium (total)	EMS0174-AUG20	mg/L	0.000003	<0.00003	ND	20	96	90	110	94	70	130
Cobalt (total)	EMS0174-AUG20	mg/L	0.000004	<0.000004	4	20	96	90	110	98	70	130
Chromium (total)	EMS0174-AUG20	mg/L	0.00008	<0.0008	10	20	95	90	110	97	70	130
Copper (total)	EMS0174-AUG20	mg/L	0.0002	<0.0002	1	20	98	90	110	97	70	130
Manganese (total)	EMS0174-AUG20	mg/L	0.00001	<0.00001	4	20	97	90	110	102	70	130
Molybdenum (total)	EMS0174-AUG20	mg/L	0.00004	<0.00004	2	20	101	90	110	99	70	130
Nickel (total)	EMS0174-AUG20	mg/L	0.0001	<0.0001	1	20	96	90	110	100	70	130
Lead (total)	EMS0174-AUG20	mg/L	0.00001	<0.00001	ND	20	98	90	110	98	70	130
Phosphorus (total)	EMS0174-AUG20	mg/L	0.003	<0.003	9	20	99	90	110	NV	70	130
Antimony (total)	EMS0174-AUG20	mg/L	0.0009	<0.0009	1	20	104	90	110	116	70	130
Selenium (total)	EMS0174-AUG20	mg/L	0.00004	<0.00004	ND	20	94	90	110	97	70	130
Tin (total)	EMS0174-AUG20	mg/L	0.00006	<0.00006	ND	20	93	90	110	NV	70	130
Titanium (total)	EMS0174-AUG20	mg/L	0.00005	<0.00005	8	20	97	90	110	NV	70	130
Zinc (total)	EMS0174-AUG20	mg/L	0.002	<0.002	2	20	95	90	110	106	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate	LC	S/Spike Blank		Ma	latrix Spike / Ref.	
	Reference			Blank	RPD AC	Spike	Recover	y Limits	Spike Recovery	Recover	y Limits
					(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9417-AUG20	cfu/100mL	-	ACCEPTED	ACCEPTE D						

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	icate	LC	S/Spike Blank		Ma	trix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	/ Limits)	Spike Recovery	Recovery (%)	^y Limits)
						(%)	(%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0434-AUG20	mg/L	0.01	< 0.01			81	55	120			
Nonylphenol Ethoxylates	GCM0434-AUG20	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0434-AUG20	mg/L	0.01	< 0.01			91	55	120			
Nonylphenol	GCM0434-AUG20	mg/L	0.001	< 0.001			94	55	120			

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duplic	cate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recover	ry Limits %)	Spike Recovery	Recover (%	y Limits)
						(70)	(%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0468-AUG20	mg/L	2	<2	NSS	20	105	75	125			
Oil & Grease-AV/MS												
Method: MOE E3401/SM 5520F Internal r	ref.: ME-CA-IENVIGC-I	_AK-AN-019										

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	/ Limits)
						(%)	(%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0468-AUG20	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0468-AUG20	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Matrix Spike / Ref. Spike Recovery Lir Recovery (%) (%) Low	High
рН	EWL0344-AUG20	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover (9	ry Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0227-AUG20	mg/L	0.002	<0.002	ND	10	114	80	120	101	75	125
4AAP-Phenolics	SKA0244-AUG20	mg/L	0.002	<0.002	ND	10	101	80	120	92	75	125
Polychlorinated Biphenyls												
Method: MOE E3400/EPA 8082A Intern	al ref.: ME-CA-[ENVIGC-	LAK-AN-001										

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENV]GC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Du	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) - Total	GCM0451-AUG20	mg/L	0.0001	<0.0001	ND	30	99	60	140	92	60	140

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dupl	cate	LC	S/Spike Blank		M	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recove (%	ry Limits 6)	Spike Recovery	Recover (%	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0424-AUG20	mg/L	0.002	< 0.002	NSS	30	90	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0424-AUG20	mg/L	0.002	< 0.002	NSS	30	96	50	140	NSS	50	140
Suspended Solids												
Method: SM 2540D Internal ref.: ME-CA-	IENVIEWL-LAK-AN-004											

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Du	plicate	LC	S/Spike Blank		М	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0337-AUG20	mg/L	2	< 2	0	10	98	90	110	NA		
Total Suspended Solids	EWL0347-AUG20	mg/L	2	< 2	0	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0221-AUG20	as N mg/L	1.0	<0.5	8	10	107	90	110	94	75	125
Total Kjeldahl Nitrogen	SKA0237-AUG20	as N mg/L	1.0	<0.5	8	10	104	90	110	102	75	125
Total Kjeldahl Nitrogen	SKA0248-AUG20	as N mg/L	1.0	<0.5	1	10	103	90	110	116	75	125

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	trix Spike / Ref.	,
	Reference			Blank	RPD	AC (%)	Spike	Recove	ry Limits 6)	Spike Recovery	Recover	y Limits
						(70)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	91	60	130	96	50	140
1,2-Dichlorobenzene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	94	60	130	99	50	140
1,4-Dichlorobenzene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	94	60	130	98	50	140
Benzene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
Chloroform	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
cis-1,2-Dichloroethene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	99	60	130	102	50	140
Ethylbenzene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
m-p-xylene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	96	60	130	100	50	140
Methyl ethyl ketone	GCM0432-AUG20	mg/L	0.02	<0.02	ND	30	93	50	140	93	50	140
Methylene Chloride	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
o-xylene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	96	60	130	100	50	140
Styrene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	95	60	130	98	50	140
Tetrachloroethylene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
(perchloroethylene)												
Toluene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	98	60	130	101	50	140
trans-1,3-Dichloropropene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
Trichloroethylene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	98	60	130	98	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

	Lakafaldi 195 Ca	R	Reque	st for Labo	orato	ory S	ervi	ces	and	CH	AIN	OF	CUS	бто	DY									No:01670
BUD Environment, Health & Safety	- Lakefield: 185 Co	sortium Court,	Lakefield, London, (ON, N6E 2S8 Phor	e: 705- e: 519-	672-450	00 Fax:	Free: 87	2-6365 77-848-	8060 F	ax: 519	s.com 9-672-0	0361	nment					i danak			de l' et niture		Page 1 of 1
Ki Sheard		Reseived By	loignotur	Labo	ratory	/ Info	matio	on Se	ction	- Lab	use	only												
Received Date: U8 / 24 / ZO (mm/dd/	/y)	Custody Sea	I Present:	Yes No	T		Cooli	ng Ager	nt Prese	ent: Ye	es 🗌	No [Type:_	10	e								
Received Time: <u>6</u> :00 (hr : min)		Custody Sea	I Intact:	Yes No	Z		Temp	erature	Upon I	Receipt	(°C)	2.	12	.12	2			Δ			LAB	LIMS #	OAl	the 82-Aug20
REPORT INFORMATION	IN	VOICE INFO	ORMATIC	DN										1										
Company: Thurson	(same as R	eport Informa	ation)		Quot	ation #					and a second						F	.O. #: _		10 Alexandres			No. No. of Providence of Provi	
Contact: ALIRCEA HUTTEL	Company:	and the second			Proje	ect #:	28	266	2				т		ROII			TRE Loca	tion/II	D:				The second second
Address: <u>COLO WINSION</u>		ata ang ata a				N R	eqular	TAT (5-7dav	(2)		100	ant i	OILIAF			TAT	's are qu	oted in	busines	s days	s (exclu	de statuto	ry holidays & weekends).
MARK DR. OU	Address:	and the second		A CONTRACTOR OF	DUC	U TAT	(Addie	tional	Charg						D	r	San	ples rece	eived a	fter 6pm	or on	weeke	nds: TAT	begins next business day
Filone	Phone:	No. 19 Sec.			PLE	ASE CO	ONFIR	M RUS	SH FE	ASIBI	LITY V	VITH :	SĜS F		Day ESEN		ays [E PRIO	_B Day	S [] JBMI	4 Days				
	1 Hone	and the second			Spec	ify Due	Date					7	*N0	TE: DI	RINKI	IG (PO	ABLE)	WATER S	SAMPL	ES FOF	RHUM	AN CO	NSUMPT	ON MUST BE SUBMITTE
Email: AHEJAZIONANICA.			No.	And And And			. 546.					NIA	IVC		DEC	LIES	WITH	SGS DRI	NKING	WATE	R CHA	IN OF	CUSTOD	1
	Other Regulation	ne:		ower By Low	All and a	M	81		SV	20	PCB	PI	HC	V		Pest	IED	Oth	er (-	longe or	cifu)		TCLP	
Table 1 Res/Park Soil Texture:	Reg 347/558	(3 Day min T.	AT)	Sanitary			1.100	1				1					annaithe Al-lasta			lease spe	2	1999 (A)	Saceli	Constant Constant
Table 2 Ind/Com Coarse	PWQO	MMER		Storm								and in				-	H.				15	by	TCLP	and a second second
Table 3 Agri/Other Medium/Fine		Other:	M	unicipality:							oclor			1	100					Ø	3	n P	tests	
Soil Volume		Reportable *Se	e note	<u></u>		AR-so	g, crvi	ïŻ.	105] Are									ichat	10	ded		Salar and
RECORD OF SITE CONDITION (RSC)	YES	NO			(N)	anic),EC,S	te only) H	Pb,Mo			L		2.4			other		008		9 Lea	1	Exten	Voc	COMMENTS:
			1		2 P	BUHWS	Sui S-soil	co,Cu		Ps	otal	X				pecify				06/19 els Ta	100	acte	РСВ	and the second second
SAMPLE IDENTIFICATION DATE TIME # OF BOTTLES M		ES MATRIX	Field Filtere	Actals & In cl CrVI, CN,Hg pH,(E	UII Metals	CP Metals	AHS only	NOCS Inci PAHS, ABNS, C	CBs 🗌 To	-1-F4 + BTI	1-F4 only BTEX	OCS Lind BTEX	STEX only	Desticides				ppendix 2: 4	ewer Use	Vater Char	B(a)P			
1 20 - 2 4	AUSOLIZ	0 10:01	0 12	en	N	A ES	H ⁰	- 0V		0)m			u e	9		HO				4 0	2	- 0		
2 20-20	_ 11	1:00	17	6m	N								gillor?				(allow)				X			
3 20-16	-4-	12:30	112	. 'Sn	N				15	5.1.2				1						1	×		and the second	L. STREET
4 20-08	-11 -	14:30	17	En	100	See	Signe -		1.	en e				100					1		X			a de la Cartine
5			-				24							1200			19.27 P	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			6	1		
6		1	1.24				abor 1		1997 - 19	12.7		Contraction of the	100					10	1	13.23		1.14		
7			1.1.1			Chining Marias	1.1.1					Rec Lo borge						1997 - 19		1	1.4.5			and the second
8			and the second		. 91.980 	267						-	-	Contraction of	-	Strengto St	m. C			1999 (M. 1997) 1997 (M. 1997)		2	1	
					- personale	معناجها			-				6.3			1215			12.24	Ca. A		1		
	and the state of the state	Standar	personal (*)		14	-	-									(Constant)		4	-	Net Ch	1.1	120		
10	- Addrew Marine Property	No.	1			1	1.44			in the		100	Sin.				182 C	14		1		1.00		Same Spice
11 rectainer and legalite	a second as the		1	1987 2487			Million .				al and	1	1000	Selonare			1.994		1	1	1	1	A	
12			and the			100	1				1.				1			123		T PAL				
Deservations/Comments/Special Instructions	a de ales a ales en			and the second	10.24	la die	all			10.10		100	1				100	ALC: NO.				in the second		
Sampled By (NAME):	ANPA	cin	Signatur	re: //	1	-			NU SA		eliteri Catelori			100		~ (2 -			0	1	dhad		Pink Copy - Client
Relinquished by (NAME):	PARPA	LUA	Signatur	re:	7		(1997) (1997) (1997)	~		19.00	- 1997 - 1999			100	Date	00	12	91_	20	- Audio	(mm/d	d/yy)	1.20	Yen& White Copy - SC
Revision # 1.4 Note: Submission of samples to SGS	is acknowledgement that	at you have been	provided o	direction on sample co	llection/	handling	and tran	sportatio	on of sar	nples. {2	} Submi	esion of	feamole	te la Of	Date	00	5_1_	241		on of work	k Sian	atures m	nay appear of	on this form e retained on file i